Parameterized Complexity of Asynchronous Border Minimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113713" target="_blank" >RIV/00216224:14330/19:00113713 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00453-018-0442-5" target="_blank" >https://link.springer.com/article/10.1007/s00453-018-0442-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-018-0442-5" target="_blank" >10.1007/s00453-018-0442-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized Complexity of Asynchronous Border Minimization
Popis výsledku v původním jazyce
Microarrays are research tools used in gene discovery as well as disease and cancer diagnostics. Two prominent but challenging problems related to microarrays are the Border Minimization Problem (BMP) and the Border Minimization Problem with given placement (P-BMP). The common task of these two problems is to create so-called probe sequences (essentially a string) in a microarray. Here, the goal of the former problem is to determine an assignment of each probe sequence to a unique cell of the array and afterwards to construct the sequences at their respective cells while minimizing the border length of the probes. In contrast, for the latter problem the assignment of the probes to the cells is already given. In this paper we investigate the parameterized complexity of the natural exhaustive variants of BMP and P-BMP, termed BMPe and P-BMPe respectively, under several natural parameters. We show that BMPe and P-BMPe are in FPT under the following two combinations of parameters: (1) the size of the alphabet (c), the maximum length of a sequence (string) in the input (l) and the number of rows of the microarray (r); and, (2) the size of the alphabet and the size of the border length (o). Furthermore, P-BMPe is in FPT when parameterized by c and l. We complement our tractability results with a number of corresponding hardness results.
Název v anglickém jazyce
Parameterized Complexity of Asynchronous Border Minimization
Popis výsledku anglicky
Microarrays are research tools used in gene discovery as well as disease and cancer diagnostics. Two prominent but challenging problems related to microarrays are the Border Minimization Problem (BMP) and the Border Minimization Problem with given placement (P-BMP). The common task of these two problems is to create so-called probe sequences (essentially a string) in a microarray. Here, the goal of the former problem is to determine an assignment of each probe sequence to a unique cell of the array and afterwards to construct the sequences at their respective cells while minimizing the border length of the probes. In contrast, for the latter problem the assignment of the probes to the cells is already given. In this paper we investigate the parameterized complexity of the natural exhaustive variants of BMP and P-BMP, termed BMPe and P-BMPe respectively, under several natural parameters. We show that BMPe and P-BMPe are in FPT under the following two combinations of parameters: (1) the size of the alphabet (c), the maximum length of a sequence (string) in the input (l) and the number of rows of the microarray (r); and, (2) the size of the alphabet and the size of the border length (o). Furthermore, P-BMPe is in FPT when parameterized by c and l. We complement our tractability results with a number of corresponding hardness results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
201-223
Kód UT WoS článku
000455323200009
EID výsledku v databázi Scopus
2-s2.0-85046894462