Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Group Activity Selection with Few Agent Types

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113722" target="_blank" >RIV/00216224:14330/19:00113722 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://drops.dagstuhl.de/opus/volltexte/2019/11169/" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2019/11169/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2019.48" target="_blank" >10.4230/LIPIcs.ESA.2019.48</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Group Activity Selection with Few Agent Types

  • Popis výsledku v původním jazyce

    The Group Activity Selection Problem (GASP) models situations where a group of agents needs to be distributed to a set of activities while taking into account preferences of the agents w.r.t. individual activities and activity sizes. The problem, along with its well-known variants sGASP and gGASP, has previously been studied in the parameterized complexity setting with various parameterizations, such as number of agents, number of activities and solution size. However, the complexity of the problem parameterized by the number of types of agents, a natural parameter proposed already in the first paper that introduced GASP, has so far remained unexplored. In this paper we establish the complexity map for GASP, sGASP and gGASP when the number of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of general interest) and identifying certain compression steps which allow us to focus on solutions which are "acyclic". These algorithms are complemented by matching lower bounds, which among others close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest: as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset Sum, which may find applications in other settings as well.

  • Název v anglickém jazyce

    Group Activity Selection with Few Agent Types

  • Popis výsledku anglicky

    The Group Activity Selection Problem (GASP) models situations where a group of agents needs to be distributed to a set of activities while taking into account preferences of the agents w.r.t. individual activities and activity sizes. The problem, along with its well-known variants sGASP and gGASP, has previously been studied in the parameterized complexity setting with various parameterizations, such as number of agents, number of activities and solution size. However, the complexity of the problem parameterized by the number of types of agents, a natural parameter proposed already in the first paper that introduced GASP, has so far remained unexplored. In this paper we establish the complexity map for GASP, sGASP and gGASP when the number of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of general interest) and identifying certain compression steps which allow us to focus on solutions which are "acyclic". These algorithms are complemented by matching lower bounds, which among others close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest: as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset Sum, which may find applications in other settings as well.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    27th Annual European Symposium on Algorithms (ESA 2019)

  • ISBN

    9783959771245

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Název nakladatele

    Dagstuhl

  • Místo vydání

    Nemecko

  • Místo konání akce

    Nemecko

  • Datum konání akce

    1. 1. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000570729400048