Group Activity Selection with Few Agent Types
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113722" target="_blank" >RIV/00216224:14330/19:00113722 - isvavai.cz</a>
Výsledek na webu
<a href="https://drops.dagstuhl.de/opus/volltexte/2019/11169/" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2019/11169/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2019.48" target="_blank" >10.4230/LIPIcs.ESA.2019.48</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Group Activity Selection with Few Agent Types
Popis výsledku v původním jazyce
The Group Activity Selection Problem (GASP) models situations where a group of agents needs to be distributed to a set of activities while taking into account preferences of the agents w.r.t. individual activities and activity sizes. The problem, along with its well-known variants sGASP and gGASP, has previously been studied in the parameterized complexity setting with various parameterizations, such as number of agents, number of activities and solution size. However, the complexity of the problem parameterized by the number of types of agents, a natural parameter proposed already in the first paper that introduced GASP, has so far remained unexplored. In this paper we establish the complexity map for GASP, sGASP and gGASP when the number of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of general interest) and identifying certain compression steps which allow us to focus on solutions which are "acyclic". These algorithms are complemented by matching lower bounds, which among others close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest: as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset Sum, which may find applications in other settings as well.
Název v anglickém jazyce
Group Activity Selection with Few Agent Types
Popis výsledku anglicky
The Group Activity Selection Problem (GASP) models situations where a group of agents needs to be distributed to a set of activities while taking into account preferences of the agents w.r.t. individual activities and activity sizes. The problem, along with its well-known variants sGASP and gGASP, has previously been studied in the parameterized complexity setting with various parameterizations, such as number of agents, number of activities and solution size. However, the complexity of the problem parameterized by the number of types of agents, a natural parameter proposed already in the first paper that introduced GASP, has so far remained unexplored. In this paper we establish the complexity map for GASP, sGASP and gGASP when the number of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of general interest) and identifying certain compression steps which allow us to focus on solutions which are "acyclic". These algorithms are complemented by matching lower bounds, which among others close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest: as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset Sum, which may find applications in other settings as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
27th Annual European Symposium on Algorithms (ESA 2019)
ISBN
9783959771245
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
16
Strana od-do
1-16
Název nakladatele
Dagstuhl
Místo vydání
Nemecko
Místo konání akce
Nemecko
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000570729400048