Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Management and Optimization of Very Large Machine Learning Dataset for Question Answering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114687" target="_blank" >RIV/00216224:14330/20:00114687 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://nlp.fi.muni.cz/raslan/raslan20.pdf#page=21" target="_blank" >https://nlp.fi.muni.cz/raslan/raslan20.pdf#page=21</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Management and Optimization of Very Large Machine Learning Dataset for Question Answering

  • Popis výsledku v původním jazyce

    Question answering strategies lean almost exclusively on deep neural network computations nowadays. Managing a large set of input data (questions, answers, full documents, metadata) in several forms suitable as the first layer of a selected network architecture can be a non-trivial task. In this paper, we present the details and evaluation of preparing a rich dataset of more than 13 thousand question-answer pairs with more than 6,500 full documents. We show, how a Python-optimized database in a network environment was utilized to offer fast responses based on the 26 GiB database of input data. A global hyperparameter optimization process with controlled running of thousands of evaluation experiments to reach a near-optimum setup of the learning process is also explicated.

  • Název v anglickém jazyce

    Efficient Management and Optimization of Very Large Machine Learning Dataset for Question Answering

  • Popis výsledku anglicky

    Question answering strategies lean almost exclusively on deep neural network computations nowadays. Managing a large set of input data (questions, answers, full documents, metadata) in several forms suitable as the first layer of a selected network architecture can be a non-trivial task. In this paper, we present the details and evaluation of preparing a rich dataset of more than 13 thousand question-answer pairs with more than 6,500 full documents. We show, how a Python-optimized database in a network environment was utilized to offer fast responses based on the 26 GiB database of input data. A global hyperparameter optimization process with controlled running of thousands of evaluation experiments to reach a near-optimum setup of the learning process is also explicated.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-23891S" target="_blank" >GA18-23891S: Hyperintensionální usuzování nad texty přirozeného jazyka</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Fourteenth Workshop on Recent Advances in Slavonic Natural Language Processing, RASLAN 2020

  • ISBN

    9788026316008

  • ISSN

    2336-4289

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    23-34

  • Název nakladatele

    Tribun EU

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    1. 1. 2020

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku

    000655471300003