Improving Big Data Clustering for Jamming Detection in Smart Mobility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115314" target="_blank" >RIV/00216224:14330/20:00115314 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-58201-2_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-58201-2_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58201-2_6" target="_blank" >10.1007/978-3-030-58201-2_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Big Data Clustering for Jamming Detection in Smart Mobility
Popis výsledku v původním jazyce
Smart mobility, with its urban transportation services ranging from real-time traffic control to cooperative vehicle infrastructure systems, is becoming increasingly critical in smart cities. These smart mobility services thus need to be very well protected against a variety of security threats, such as intrusion, jamming, and Sybil attacks. One of the frequently cited attacks in smart mobility is the jamming attack. In order to detect the jamming attacks, different anti-jamming applications have been developed to reduce the impact of malicious jamming attacks. One important step in anti-jamming detection is to cluster the vehicular data. However, it is usually very time-consuming to detect the jamming attacks that may affect the safety of roads and vehicle communication in real-time. Therefore, this paper proposes an efficient big data clustering model, coresets-based clustering, to support the real-time detection of jamming attacks. We validate the model efficiency and applicability in the context of a typical smart mobility system: Vehicular Ad-hoc Network, known as VANET.
Název v anglickém jazyce
Improving Big Data Clustering for Jamming Detection in Smart Mobility
Popis výsledku anglicky
Smart mobility, with its urban transportation services ranging from real-time traffic control to cooperative vehicle infrastructure systems, is becoming increasingly critical in smart cities. These smart mobility services thus need to be very well protected against a variety of security threats, such as intrusion, jamming, and Sybil attacks. One of the frequently cited attacks in smart mobility is the jamming attack. In order to detect the jamming attacks, different anti-jamming applications have been developed to reduce the impact of malicious jamming attacks. One important step in anti-jamming detection is to cluster the vehicular data. However, it is usually very time-consuming to detect the jamming attacks that may affect the safety of roads and vehicle communication in real-time. Therefore, this paper proposes an efficient big data clustering model, coresets-based clustering, to support the real-time detection of jamming attacks. We validate the model efficiency and applicability in the context of a typical smart mobility system: Vehicular Ad-hoc Network, known as VANET.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 35th International Conference on ICT Systems Security and Privacy Protection - IFIP SEC
ISBN
9783030582005
ISSN
1868-4238
e-ISSN
—
Počet stran výsledku
14
Strana od-do
78-91
Název nakladatele
Springer IFIP AICT series
Místo vydání
Maribor, Slovenia
Místo konání akce
Maribor, Slovenia
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—