Towards Faster Big Data Analytics for Anti-Jamming Applications in vehicular ad-hoc network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00121319" target="_blank" >RIV/00216224:14330/21:00121319 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/ett.4280" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/ett.4280</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/ett.4280" target="_blank" >10.1002/ett.4280</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Faster Big Data Analytics for Anti-Jamming Applications in vehicular ad-hoc network
Popis výsledku v původním jazyce
Nowadays, Wireless Vehicular Ad-Hoc Network (VANET) has become a valuable asset for transportation systems. However, this advanced technology is characterized by highly distributed and networked environment, which makes VANET communications vulnerable to malicious jamming attacks. Although Big Data Analytics has been used to solve this critical security issue by supporting the development of anti-jamming applications, as the amount of vehicular data is growing exponentially, the anti-jamming applications face many challenges (i.e, reactions in real-time) due to the lack of specific solutions that can keep up with the fast advancement of VANET. In this paper, we propose a new vehicular data prioritization model based on coresets to accelerate the Big Data Analytics in VANET. Our experimental evaluation shows that our solution can significantly increase the efficiency for clustering in jamming detection while keeping and improving the clustering quality. Also, the proposed solution can enable the real-time detection and be integrated to anti-jamming applications.
Název v anglickém jazyce
Towards Faster Big Data Analytics for Anti-Jamming Applications in vehicular ad-hoc network
Popis výsledku anglicky
Nowadays, Wireless Vehicular Ad-Hoc Network (VANET) has become a valuable asset for transportation systems. However, this advanced technology is characterized by highly distributed and networked environment, which makes VANET communications vulnerable to malicious jamming attacks. Although Big Data Analytics has been used to solve this critical security issue by supporting the development of anti-jamming applications, as the amount of vehicular data is growing exponentially, the anti-jamming applications face many challenges (i.e, reactions in real-time) due to the lack of specific solutions that can keep up with the fast advancement of VANET. In this paper, we propose a new vehicular data prioritization model based on coresets to accelerate the Big Data Analytics in VANET. Our experimental evaluation shows that our solution can significantly increase the efficiency for clustering in jamming detection while keeping and improving the clustering quality. Also, the proposed solution can enable the real-time detection and be integrated to anti-jamming applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions on Emerging Telecommunications Technologies
ISSN
2161-3915
e-ISSN
2161-3915
Svazek periodika
32
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000640572600001
EID výsledku v databázi Scopus
2-s2.0-85104284359