A Hybrid Data-driven Model for Intrusion Detection in VANET
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00121268" target="_blank" >RIV/00216224:14330/21:00121268 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.procs.2021.03.065" target="_blank" >http://dx.doi.org/10.1016/j.procs.2021.03.065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2021.03.065" target="_blank" >10.1016/j.procs.2021.03.065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Hybrid Data-driven Model for Intrusion Detection in VANET
Popis výsledku v původním jazyce
Nowadays, VANET (Vehicular Ad-hoc NETwork) has gained increasing attention from many researchers with its various applications, such as enhancing traffic safety by collecting and disseminating traffic event information. This increased interest in VANET has necessitated greater scrutiny of machine learning (ML) methods used for improving the security capabilities of intrusion detection systems (IDSs), such as the need to solve computationally intensive ML problems due to the increased vehicular data. Therefore, in this paper, we propose a hybrid ML model to enhance the performance of IDSs by dealing with the explosive growth in computing power and the need for detecting malicious incidents timely. The proposed approach mainly uses the advantages of Random Forest to detect known network intrusions. Besides, there is a post-detection phase to detect possible novel intruders by using the advantages of coresets and clustering algorithms. Our approach is evaluated over a very recent IDS dataset named CICIDS2017. The preliminary results show that the proposed hybrid model can increase the utility of IDSs.
Název v anglickém jazyce
A Hybrid Data-driven Model for Intrusion Detection in VANET
Popis výsledku anglicky
Nowadays, VANET (Vehicular Ad-hoc NETwork) has gained increasing attention from many researchers with its various applications, such as enhancing traffic safety by collecting and disseminating traffic event information. This increased interest in VANET has necessitated greater scrutiny of machine learning (ML) methods used for improving the security capabilities of intrusion detection systems (IDSs), such as the need to solve computationally intensive ML problems due to the increased vehicular data. Therefore, in this paper, we propose a hybrid ML model to enhance the performance of IDSs by dealing with the explosive growth in computing power and the need for detecting malicious incidents timely. The proposed approach mainly uses the advantages of Random Forest to detect known network intrusions. Besides, there is a post-detection phase to detect possible novel intruders by using the advantages of coresets and clustering algorithms. Our approach is evaluated over a very recent IDS dataset named CICIDS2017. The preliminary results show that the proposed hybrid model can increase the utility of IDSs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 12th International Conference on Ambient Systems, Networks and Technologies (ANT 2021)
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
8
Strana od-do
516-523
Název nakladatele
Elsevier Science
Místo vydání
Warsaw, Poland
Místo konání akce
Warsaw, Poland
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000672800000064