Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved bounds for centered colorings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115527" target="_blank" >RIV/00216224:14330/20:00115527 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.136" target="_blank" >https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.136</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611975994.136" target="_blank" >10.1137/1.9781611975994.136</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved bounds for centered colorings

  • Popis výsledku v původním jazyce

    A vertex coloring c of a graph G is p-centered if for every connected subgraph H of G either c uses more than p colors on H or there is a color that appears exactly once on H Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function f such that for every p &gt;= 1, every graph in the class admits a p-centered coloring using at most f(p) colors. In this paper, we give upper bounds for the maximum number of colors needed in a p-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit p-centered colorings with O(p^3 log p) colors where the previous bound was O(p^19); (2) bounded degree graphs admit p-centered colorings with O(p) colors while it was conjectured that they may require exponential number of colors in p; (3) graphs avoiding a fixed graph as a topological minor admit p-centered colorings with a polynomial in p number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth t that require (p+t choose t) colors in any p-centered coloring and this bound matches the upper bound; (5) there are planar graphs that require Omega(p^2 log p) colors in any p-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth 3. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.

  • Název v anglickém jazyce

    Improved bounds for centered colorings

  • Popis výsledku anglicky

    A vertex coloring c of a graph G is p-centered if for every connected subgraph H of G either c uses more than p colors on H or there is a color that appears exactly once on H Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function f such that for every p &gt;= 1, every graph in the class admits a p-centered coloring using at most f(p) colors. In this paper, we give upper bounds for the maximum number of colors needed in a p-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit p-centered colorings with O(p^3 log p) colors where the previous bound was O(p^19); (2) bounded degree graphs admit p-centered colorings with O(p) colors while it was conjectured that they may require exponential number of colors in p; (3) graphs avoiding a fixed graph as a topological minor admit p-centered colorings with a polynomial in p number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth t that require (p+t choose t) colors in any p-centered coloring and this bound matches the upper bound; (5) there are planar graphs that require Omega(p^2 log p) colors in any p-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth 3. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms

  • ISBN

    9781611975994

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    2212-2226

  • Název nakladatele

    SIAM

  • Místo vydání

    Not specified

  • Místo konání akce

    Salt Lake City

  • Datum konání akce

    1. 1. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000554408102017