Developing the Quality Model for Collaborative Open Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115620" target="_blank" >RIV/00216224:14330/20:00115620 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.procs.2020.09.228" target="_blank" >http://dx.doi.org/10.1016/j.procs.2020.09.228</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2020.09.228" target="_blank" >10.1016/j.procs.2020.09.228</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Developing the Quality Model for Collaborative Open Data
Popis výsledku v původním jazyce
Nowadays, the development of data sharing technologies allows to involve more people to collaboratively contribute knowledge on the Web. The shared knowledge is usually represented as Collaborative Open Data (COD), for example, Wikipedia is one of the well-known sources for COD. The Wikipedia articles can be written in different languages, updated in real time, and originated from a vast variety of editors. However, COD also bring different data quality problems such as data inconsistency and low data objectiveness due to the crowd-based and dynamic nature. These data quality problems such as biased information may lead to sentimental changes or social impacts. This paper therefore proposes a new measurement model to assess the quality of COD. In order to evaluate the proposed model, A preliminary experiment is conducted with a large scale of Wikipedia articles to validate the applicability and efficiency of this proposed quality model in the real-world scenario.
Název v anglickém jazyce
Developing the Quality Model for Collaborative Open Data
Popis výsledku anglicky
Nowadays, the development of data sharing technologies allows to involve more people to collaboratively contribute knowledge on the Web. The shared knowledge is usually represented as Collaborative Open Data (COD), for example, Wikipedia is one of the well-known sources for COD. The Wikipedia articles can be written in different languages, updated in real time, and originated from a vast variety of editors. However, COD also bring different data quality problems such as data inconsistency and low data objectiveness due to the crowd-based and dynamic nature. These data quality problems such as biased information may lead to sentimental changes or social impacts. This paper therefore proposes a new measurement model to assess the quality of COD. In order to evaluate the proposed model, A preliminary experiment is conducted with a large scale of Wikipedia articles to validate the applicability and efficiency of this proposed quality model in the real-world scenario.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 24th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems - KES 2020
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1883-1892
Název nakladatele
Elsevier Procedia Computer Science
Místo vydání
Verona, Italy
Místo konání akce
Verona, Italy
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—