Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring Personalized University Ranking and Recommendation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115805" target="_blank" >RIV/00216224:14330/20:00115805 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/3386392.3397590" target="_blank" >http://dx.doi.org/10.1145/3386392.3397590</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3386392.3397590" target="_blank" >10.1145/3386392.3397590</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring Personalized University Ranking and Recommendation

  • Popis výsledku v původním jazyce

    Finding the right university to study is still a challenge for many people due to the large number of universities worldwide. Although there exist a number of global university rankings, they provide non# personalized rankings as one-size-fits-all solution. This becomes an issue since different people may have different preferences and considerations in mind, when choosing the university to study. This paper addresses this problem and presents a Recommender System to generate a personalized ranking list based on users particular preferences. The system is capable of eliciting users preferences, provided as ratings for universities, building predictive models on the preference data, and generating a personalized university ranking list that is tailored to the particular preferences and needs of the users. We performed two sets of experiments. First, we conducted an offline experiment using a dataset of user preferences, collected by the early version of our system. This allowed us to cross-validate and compare different recommender algorithms and choose the most accurate recommender algorithm that can better suit the particular problem at hand. We integrated the chosen algorithm in the final implementation of our system. As the follow-up, we performed a user study in order to analyze whether or not the final version of our system is usable from the perception of users. The results showed that the system has scored well above the benchmark and users assessed it as "good" in term of usability.

  • Název v anglickém jazyce

    Exploring Personalized University Ranking and Recommendation

  • Popis výsledku anglicky

    Finding the right university to study is still a challenge for many people due to the large number of universities worldwide. Although there exist a number of global university rankings, they provide non# personalized rankings as one-size-fits-all solution. This becomes an issue since different people may have different preferences and considerations in mind, when choosing the university to study. This paper addresses this problem and presents a Recommender System to generate a personalized ranking list based on users particular preferences. The system is capable of eliciting users preferences, provided as ratings for universities, building predictive models on the preference data, and generating a personalized university ranking list that is tailored to the particular preferences and needs of the users. We performed two sets of experiments. First, we conducted an offline experiment using a dataset of user preferences, collected by the early version of our system. This allowed us to cross-validate and compare different recommender algorithms and choose the most accurate recommender algorithm that can better suit the particular problem at hand. We integrated the chosen algorithm in the final implementation of our system. As the follow-up, we performed a user study in order to analyze whether or not the final version of our system is usable from the perception of users. The results showed that the system has scored well above the benchmark and users assessed it as "good" in term of usability.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization - UMAP 2020

  • ISBN

    9781450367110

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    6-10

  • Název nakladatele

    ACM

  • Místo vydání

    Genoa, Italy

  • Místo konání akce

    Genoa, Italy

  • Datum konání akce

    1. 1. 2020

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku