Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Implicit Preference Relations to Improve Recommender Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10320134" target="_blank" >RIV/00216208:11320/17:10320134 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007/s13740-016-0061-8" target="_blank" >http://link.springer.com/article/10.1007/s13740-016-0061-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13740-016-0061-8" target="_blank" >10.1007/s13740-016-0061-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Implicit Preference Relations to Improve Recommender Systems

  • Popis výsledku v původním jazyce

    Our work is generally focused on making recommendations for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit durations or a low number of visited objects. In this paper, we present a novel approach to use a specific user behavior pattern as implicit feedback, forming binary relations between objects. Our hypothesis is that if a user selects a specific object from the list of displayed objects, it is an expression of his/her binary preference between the selected object and others that are visible, but ignored. We expand this relation with content-based similarity of objects. We define implicit preference relation (IPR) a partial ordering of objects based on similarity expansion of ignored-selected preference relation. We propose a merging algorithm utilizing the synergic effect of two approaches this IPR partial ordering and a list of recommended objects based on any/another algorithm. We report on a series of offline experiments with various recommending algorithms on two real-world e-commerce datasets. The merging algorithm could improve the ranked list of most of the evaluated algorithms in terms of nDCG. Furthermore, we also provide access to the relevant datasets and source codes for further research.

  • Název v anglickém jazyce

    Using Implicit Preference Relations to Improve Recommender Systems

  • Popis výsledku anglicky

    Our work is generally focused on making recommendations for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit durations or a low number of visited objects. In this paper, we present a novel approach to use a specific user behavior pattern as implicit feedback, forming binary relations between objects. Our hypothesis is that if a user selects a specific object from the list of displayed objects, it is an expression of his/her binary preference between the selected object and others that are visible, but ignored. We expand this relation with content-based similarity of objects. We define implicit preference relation (IPR) a partial ordering of objects based on similarity expansion of ignored-selected preference relation. We propose a merging algorithm utilizing the synergic effect of two approaches this IPR partial ordering and a list of recommended objects based on any/another algorithm. We report on a series of offline experiments with various recommending algorithms on two real-world e-commerce datasets. The merging algorithm could improve the ranked list of most of the evaluated algorithms in terms of nDCG. Furthermore, we also provide access to the relevant datasets and source codes for further research.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal on Data Semantics

  • ISSN

    1861-2032

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

    15-30

  • Kód UT WoS článku

    000398896700003

  • EID výsledku v databázi Scopus

    2-s2.0-85013433868