Using Implicit Preference Relations to Improve Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10320134" target="_blank" >RIV/00216208:11320/17:10320134 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s13740-016-0061-8" target="_blank" >http://link.springer.com/article/10.1007/s13740-016-0061-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13740-016-0061-8" target="_blank" >10.1007/s13740-016-0061-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Implicit Preference Relations to Improve Recommender Systems
Popis výsledku v původním jazyce
Our work is generally focused on making recommendations for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit durations or a low number of visited objects. In this paper, we present a novel approach to use a specific user behavior pattern as implicit feedback, forming binary relations between objects. Our hypothesis is that if a user selects a specific object from the list of displayed objects, it is an expression of his/her binary preference between the selected object and others that are visible, but ignored. We expand this relation with content-based similarity of objects. We define implicit preference relation (IPR) a partial ordering of objects based on similarity expansion of ignored-selected preference relation. We propose a merging algorithm utilizing the synergic effect of two approaches this IPR partial ordering and a list of recommended objects based on any/another algorithm. We report on a series of offline experiments with various recommending algorithms on two real-world e-commerce datasets. The merging algorithm could improve the ranked list of most of the evaluated algorithms in terms of nDCG. Furthermore, we also provide access to the relevant datasets and source codes for further research.
Název v anglickém jazyce
Using Implicit Preference Relations to Improve Recommender Systems
Popis výsledku anglicky
Our work is generally focused on making recommendations for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit durations or a low number of visited objects. In this paper, we present a novel approach to use a specific user behavior pattern as implicit feedback, forming binary relations between objects. Our hypothesis is that if a user selects a specific object from the list of displayed objects, it is an expression of his/her binary preference between the selected object and others that are visible, but ignored. We expand this relation with content-based similarity of objects. We define implicit preference relation (IPR) a partial ordering of objects based on similarity expansion of ignored-selected preference relation. We propose a merging algorithm utilizing the synergic effect of two approaches this IPR partial ordering and a list of recommended objects based on any/another algorithm. We report on a series of offline experiments with various recommending algorithms on two real-world e-commerce datasets. The merging algorithm could improve the ranked list of most of the evaluated algorithms in terms of nDCG. Furthermore, we also provide access to the relevant datasets and source codes for further research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal on Data Semantics
ISSN
1861-2032
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
15-30
Kód UT WoS článku
000398896700003
EID výsledku v databázi Scopus
2-s2.0-85013433868