Using Implicit Preference Relations to Improve Content Based Recommending
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314898" target="_blank" >RIV/00216208:11320/15:10314898 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-27729-5_1" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-27729-5_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-27729-5_1" target="_blank" >10.1007/978-3-319-27729-5_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Implicit Preference Relations to Improve Content Based Recommending
Popis výsledku v původním jazyce
Our work is generally focused on recommending for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit times or low number of visited objects. In this paper, we present a novel approach to use specific user behavior as implicit feedback, forming binary relations between objects. Our hypothesis is that if user select some object from the list of displayed objects, it is an expression of his/her binary preference between selected and other shown objects. These relations are expanded based on content-based similarity of objects forming partial ordering of objects. Using these relations, it is possible to alter any list of recommended objects or create one from scratch. We have conductedseveral off-line experiments with real user data from a Czech e-commerce site with keyword based VSM and SimCat recommenders. Experiments confirmed competitiveness of our method, however on-line A/B testing should be conducted in the fut
Název v anglickém jazyce
Using Implicit Preference Relations to Improve Content Based Recommending
Popis výsledku anglicky
Our work is generally focused on recommending for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit times or low number of visited objects. In this paper, we present a novel approach to use specific user behavior as implicit feedback, forming binary relations between objects. Our hypothesis is that if user select some object from the list of displayed objects, it is an expression of his/her binary preference between selected and other shown objects. These relations are expanded based on content-based similarity of objects forming partial ordering of objects. Using these relations, it is possible to alter any list of recommended objects or create one from scratch. We have conductedseveral off-line experiments with real user data from a Czech e-commerce site with keyword based VSM and SimCat recommenders. Experiments confirmed competitiveness of our method, however on-line A/B testing should be conducted in the fut
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
E-Commerce and Web Technologies, 16th International Conference on Electronic Commerce and Web Technologies, EC-Web 2015, Valencia, Spain, September 2015, Revised Selected Papers
ISBN
978-3-319-27728-8
ISSN
1865-1348
e-ISSN
—
Počet stran výsledku
14
Strana od-do
3-16
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Valencia, Spain
Datum konání akce
1. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—