Accelerating Metric Filtering by Improving Bounds on Estimated Distances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116699" target="_blank" >RIV/00216224:14330/20:00116699 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-60936-8_1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-60936-8_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60936-8_1" target="_blank" >10.1007/978-3-030-60936-8_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accelerating Metric Filtering by Improving Bounds on Estimated Distances
Popis výsledku v původním jazyce
Filtering is a fundamental strategy of metric similarity indexes to minimise the number of computed distances. Given a triple of objects for which distances of two pairs are known, the lower and upper bounds on the third distance can be set as the difference and the sum of these two already known distances, due to the triangle inequality rule of the metric space. For efficiency reasons, the tightness of bounds is crucial, but as angles within triangles of distances can be arbitrary, the worst case with zero and straight angles must also be considered for correctness. However, in data of real-life applications, the distribution of possible angles is skewed and extremes are very unlikely to occur. In this paper, we enhance the existing definition of bounds on the unknown distance with information about possible angles within triangles. We show that two lower bounds and one upper bound on each distance exist in case of limited angles. We analyse their filtering power and confirm high improvements of efficiency by experiments on several real-life datasets.
Název v anglickém jazyce
Accelerating Metric Filtering by Improving Bounds on Estimated Distances
Popis výsledku anglicky
Filtering is a fundamental strategy of metric similarity indexes to minimise the number of computed distances. Given a triple of objects for which distances of two pairs are known, the lower and upper bounds on the third distance can be set as the difference and the sum of these two already known distances, due to the triangle inequality rule of the metric space. For efficiency reasons, the tightness of bounds is crucial, but as angles within triangles of distances can be arbitrary, the worst case with zero and straight angles must also be considered for correctness. However, in data of real-life applications, the distribution of possible angles is skewed and extremes are very unlikely to occur. In this paper, we enhance the existing definition of bounds on the unknown distance with information about possible angles within triangles. We show that two lower bounds and one upper bound on each distance exist in case of limited angles. We analyse their filtering power and confirm high improvements of efficiency by experiments on several real-life datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Similarity Search and Applications: 13th International Conference, SISAP 2020, Copenhagen, Denmark, September 30 - October 2, 2020, Proceedings
ISBN
9783030609351
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
3-17
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Copenhagen, Dánsko
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000616694200001