Data-dependent Metric Filtering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125539" target="_blank" >RIV/00216224:14330/22:00125539 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0306437921001666" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306437921001666</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.is.2021.101980" target="_blank" >10.1016/j.is.2021.101980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-dependent Metric Filtering
Popis výsledku v původním jazyce
Filtering is a fundamental strategy of metric similarity indexes to minimise the number of computed distances. Given a triplet of objects for which distances of two pairs are known, the lower and upper bounds on the third distance can be determined using the triangle inequality property. Obviously, tightness of the bounds is crucial for efficiency reasons — the more precise the estimation, the more distance computations can be avoided, and the more efficient the search is. We show that it is not necessary to consider arbitrary angles in triangles formed by pairwise distances of three objects, as specific range of possible angles is data dependent. When considering realistic ranges of angles, the bounds on distances can be much more tight and filtering much more effective. We formalise the problem of the data dependent estimation of bounds on distances and deeply analyse limited angles in triangles of distances. We justify the potential of the data dependent metric filtering both, analytically and experimentally, executing many distance estimations on several real-life datasets.
Název v anglickém jazyce
Data-dependent Metric Filtering
Popis výsledku anglicky
Filtering is a fundamental strategy of metric similarity indexes to minimise the number of computed distances. Given a triplet of objects for which distances of two pairs are known, the lower and upper bounds on the third distance can be determined using the triangle inequality property. Obviously, tightness of the bounds is crucial for efficiency reasons — the more precise the estimation, the more distance computations can be avoided, and the more efficient the search is. We show that it is not necessary to consider arbitrary angles in triangles formed by pairwise distances of three objects, as specific range of possible angles is data dependent. When considering realistic ranges of angles, the bounds on distances can be much more tight and filtering much more effective. We formalise the problem of the data dependent estimation of bounds on distances and deeply analyse limited angles in triangles of distances. We justify the potential of the data dependent metric filtering both, analytically and experimentally, executing many distance estimations on several real-life datasets.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information systems
ISSN
0306-4379
e-ISSN
—
Svazek periodika
108
Číslo periodika v rámci svazku
12.5.2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
„101980“
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122239890