Efficient Combination of Classifiers for 3D Action Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00118857" target="_blank" >RIV/00216224:14330/21:00118857 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00530-021-00767-9" target="_blank" >https://link.springer.com/article/10.1007/s00530-021-00767-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00530-021-00767-9" target="_blank" >10.1007/s00530-021-00767-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Combination of Classifiers for 3D Action Recognition
Popis výsledku v původním jazyce
The popular task of 3D human action recognition is almost exclusively solved by training deep-learning classifiers. To achieve high recognition accuracy, input 3D actions are often pre-processed by various normalization or augmentation techniques. However, it is not computationally feasible to train a classifier for each possible variant of training data in order to select the best-performing combination of pre-processing techniques for a given dataset. In this paper, we propose an evaluation procedure that determines the best combination in a very efficient way. In particular, we only train one independent classifier for each available pre-processing technique and estimate the accuracy of a specific combination by efficient fusion of the corresponding classification results based on a strict majority vote rule. In addition, for the best-ranked combination, we can retrospectively apply the normalized/augmented variants of input data to train only a single classifier. This enables to decide whether it is generally better to train a single model, or rather a set of independent classifiers whose results are fused within the classification phase. We evaluate the experiments on single-subject as well as person-interaction datasets of 3D skeleton sequences and all combinations of up to 16 normalization and augmentation techniques, some of them also proposed in this paper.
Název v anglickém jazyce
Efficient Combination of Classifiers for 3D Action Recognition
Popis výsledku anglicky
The popular task of 3D human action recognition is almost exclusively solved by training deep-learning classifiers. To achieve high recognition accuracy, input 3D actions are often pre-processed by various normalization or augmentation techniques. However, it is not computationally feasible to train a classifier for each possible variant of training data in order to select the best-performing combination of pre-processing techniques for a given dataset. In this paper, we propose an evaluation procedure that determines the best combination in a very efficient way. In particular, we only train one independent classifier for each available pre-processing technique and estimate the accuracy of a specific combination by efficient fusion of the corresponding classification results based on a strict majority vote rule. In addition, for the best-ranked combination, we can retrospectively apply the normalized/augmented variants of input data to train only a single classifier. This enables to decide whether it is generally better to train a single model, or rather a set of independent classifiers whose results are fused within the classification phase. We evaluate the experiments on single-subject as well as person-interaction datasets of 3D skeleton sequences and all combinations of up to 16 normalization and augmentation techniques, some of them also proposed in this paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-02033S" target="_blank" >GA19-02033S: Vyhledávání, analytika a anotace datových toků lidských pohybů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Systems
ISSN
0942-4962
e-ISSN
1432-1882
Svazek periodika
27
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
941-952
Kód UT WoS článku
000628724200001
EID výsledku v databázi Scopus
2-s2.0-85102599920