TECHNIQUES FOR AVOIDING MODEL OVERFITTING ON SMALL DATASET
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140621" target="_blank" >RIV/00216305:26220/21:PU140621 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TECHNIQUES FOR AVOIDING MODEL OVERFITTING ON SMALL DATASET
Popis výsledku v původním jazyce
Building a deep learning model based on small dataset is difficult, even impossible. Toavoiding overfitting, we must constrain model, which we train. Techniques as data augmentation,regularization or data normalization could be crucial. We have created a benchmark with a simpleCNN image classifier in order to find the best techniques. As a result, we compare different types ofdata augmentation and weights regularization and data normalization on a small dataset.
Název v anglickém jazyce
TECHNIQUES FOR AVOIDING MODEL OVERFITTING ON SMALL DATASET
Popis výsledku anglicky
Building a deep learning model based on small dataset is difficult, even impossible. Toavoiding overfitting, we must constrain model, which we train. Techniques as data augmentation,regularization or data normalization could be crucial. We have created a benchmark with a simpleCNN image classifier in order to find the best techniques. As a result, we compare different types ofdata augmentation and weights regularization and data normalization on a small dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 27th Conference STUDENT EEICT 2021
ISBN
978-80-214-5868-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
451-456
Název nakladatele
Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
27. 4. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—