A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249816" target="_blank" >RIV/61989100:27240/22:10249816 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2079-9292/11/8/1266" target="_blank" >https://www.mdpi.com/2079-9292/11/8/1266</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/electronics11081266" target="_blank" >10.3390/electronics11081266</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection
Popis výsledku v původním jazyce
In this research, we proposed a Deep Convolutional Neural Network (DCNN) model for image-based plant leaf disease identification using data augmentation and hyperparameter optimization techniques. The DCNN model was trained on an augmented dataset of over 240,000 images of different healthy and diseased plant leaves and backgrounds. Five image augmentation techniques were used: Generative Adversarial Network, Neural Style Transfer, Principal Component Analysis, Color Augmentation, and Position Augmentation. The random search technique was used to optimize the hyperparameters of the proposed DCNN model. This research shows the significance of choosing a suitable number of layers and filters in DCNN development. Moreover, the experimental outcomes illustrate the importance of data augmentation techniques and hyperparameter optimization techniques. The performance of the proposed DCNN was calculated using different performance metrics such as classification accuracy, precision, recall, and F1-Score. The experimental results show that the proposed DCNN model achieves an average classification accuracy of 98.41% on the test dataset. Moreover, the overall performance of the proposed DCNN model was better than that of advanced transfer learning and machine learning techniques. The proposed DCNN model is useful in the identification of plant leaf diseases.
Název v anglickém jazyce
A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection
Popis výsledku anglicky
In this research, we proposed a Deep Convolutional Neural Network (DCNN) model for image-based plant leaf disease identification using data augmentation and hyperparameter optimization techniques. The DCNN model was trained on an augmented dataset of over 240,000 images of different healthy and diseased plant leaves and backgrounds. Five image augmentation techniques were used: Generative Adversarial Network, Neural Style Transfer, Principal Component Analysis, Color Augmentation, and Position Augmentation. The random search technique was used to optimize the hyperparameters of the proposed DCNN model. This research shows the significance of choosing a suitable number of layers and filters in DCNN development. Moreover, the experimental outcomes illustrate the importance of data augmentation techniques and hyperparameter optimization techniques. The performance of the proposed DCNN was calculated using different performance metrics such as classification accuracy, precision, recall, and F1-Score. The experimental results show that the proposed DCNN model achieves an average classification accuracy of 98.41% on the test dataset. Moreover, the overall performance of the proposed DCNN model was better than that of advanced transfer learning and machine learning techniques. The proposed DCNN model is useful in the identification of plant leaf diseases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronics
ISSN
2079-9292
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
nestrankovano
Kód UT WoS článku
000786889600001
EID výsledku v databázi Scopus
2-s2.0-85128423258