Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Novel Fusion Model of Hand-Crafted Features With Deep Convolutional Neural Networks for Classification of Several Chest Diseases Using X-Ray Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252812" target="_blank" >RIV/61989100:27240/23:10252812 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10103528" target="_blank" >https://ieeexplore.ieee.org/document/10103528</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3267492" target="_blank" >10.1109/ACCESS.2023.3267492</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Novel Fusion Model of Hand-Crafted Features With Deep Convolutional Neural Networks for Classification of Several Chest Diseases Using X-Ray Images

  • Popis výsledku v původním jazyce

    The results of recent research suggest that radiological images include important information related several chest diseases. As a result, the use of deep learning to assist in the automated diagnosis of chest diseases may prove useful as a diagnostic tool in the future. In this study, we propose a novel fusion model of hand-crafted features with deep convolutional neural networks (DCNNs) for classifying ten different chest diseases using chest X-rays. The method that has been suggested is split down into three distinct parts. The first step involves utilizing the Info-MGAN network to perform segmentation on the raw CXR data to construct lung images. In the second step, the segmented lung images are fed into a novel pipeline that extracts discriminatory features by using hand-crafted techniques such as SURF and ORB, and then these extracted features are fused to the trained DCNNs. At last, various machine learning models have been used as the last layer of the DCNN models for the classification of chest diseases. Comparison is made between the performance of various proposed architectures for classification, all of which integrate DCNNs, key point extraction methods, and machine learning models. The robustness of the model was further confirmed by statistical analyses of the datasets using McNemar&apos;s and ANOVA tests respectively.

  • Název v anglickém jazyce

    A Novel Fusion Model of Hand-Crafted Features With Deep Convolutional Neural Networks for Classification of Several Chest Diseases Using X-Ray Images

  • Popis výsledku anglicky

    The results of recent research suggest that radiological images include important information related several chest diseases. As a result, the use of deep learning to assist in the automated diagnosis of chest diseases may prove useful as a diagnostic tool in the future. In this study, we propose a novel fusion model of hand-crafted features with deep convolutional neural networks (DCNNs) for classifying ten different chest diseases using chest X-rays. The method that has been suggested is split down into three distinct parts. The first step involves utilizing the Info-MGAN network to perform segmentation on the raw CXR data to construct lung images. In the second step, the segmented lung images are fed into a novel pipeline that extracts discriminatory features by using hand-crafted techniques such as SURF and ORB, and then these extracted features are fused to the trained DCNNs. At last, various machine learning models have been used as the last layer of the DCNN models for the classification of chest diseases. Comparison is made between the performance of various proposed architectures for classification, all of which integrate DCNNs, key point extraction methods, and machine learning models. The robustness of the model was further confirmed by statistical analyses of the datasets using McNemar&apos;s and ANOVA tests respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    39243-39268

  • Kód UT WoS článku

    000979908800001

  • EID výsledku v databázi Scopus

    2-s2.0-85153493471