Twin-Width is Linear in the Poset Width
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119289" target="_blank" >RIV/00216224:14330/21:00119289 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/2106.15337" target="_blank" >https://arxiv.org/abs/2106.15337</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2021.6" target="_blank" >10.4230/LIPIcs.IPEC.2021.6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Twin-Width is Linear in the Poset Width
Popis výsledku v původním jazyce
Twin-width is a new parameter informally measuring how diverse are the neighbourhoods of the graph vertices, and it extends also to other binary relational structures, e.g. to digraphs and posets. It was introduced just very recently, in 2020 by Bonnet, Kim, Thomasse and Watrigant. One of the core results of these authors is that FO model checking on graph classes of bounded twin-width is in FPT. With that result, they also claimed that posets of bounded width have bounded twin-width, thus capturing prior result on FO model checking of posets of bounded width in FPT. However, their translation from poset width to twin-width was indirect and giving only a very loose double-exponential bound. We prove that posets of width d have twin-width at most 9d with a direct and elegant argument, and show that this bound is asymptotically tight. Specially, for posets of width 2 we prove that in the worst case their twin-width is also equal 2. These two theoretical results are complemented with straightforward algorithms to construct the respective contraction sequence for a given poset.
Název v anglickém jazyce
Twin-Width is Linear in the Poset Width
Popis výsledku anglicky
Twin-width is a new parameter informally measuring how diverse are the neighbourhoods of the graph vertices, and it extends also to other binary relational structures, e.g. to digraphs and posets. It was introduced just very recently, in 2020 by Bonnet, Kim, Thomasse and Watrigant. One of the core results of these authors is that FO model checking on graph classes of bounded twin-width is in FPT. With that result, they also claimed that posets of bounded width have bounded twin-width, thus capturing prior result on FO model checking of posets of bounded width in FPT. However, their translation from poset width to twin-width was indirect and giving only a very loose double-exponential bound. We prove that posets of width d have twin-width at most 9d with a direct and elegant argument, and show that this bound is asymptotically tight. Specially, for posets of width 2 we prove that in the worst case their twin-width is also equal 2. These two theoretical results are complemented with straightforward algorithms to construct the respective contraction sequence for a given poset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-04567S" target="_blank" >GA20-04567S: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Symposium on Parameterized and Exact Computation (IPEC)
ISBN
9783959772167
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
„6:1“-„6:13“
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum f{"u}r Informatik
Místo vydání
Dagstuhl
Místo konání akce
Lisboa
Datum konání akce
8. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—