Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

EDS-MEMBED: Multi-sense embeddings based on enhanced distributional semantic structures via a graph walk over word senses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00120721" target="_blank" >RIV/00216224:14330/21:00120721 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.knosys.2021.106902" target="_blank" >https://doi.org/10.1016/j.knosys.2021.106902</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.knosys.2021.106902" target="_blank" >10.1016/j.knosys.2021.106902</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    EDS-MEMBED: Multi-sense embeddings based on enhanced distributional semantic structures via a graph walk over word senses

  • Popis výsledku v původním jazyce

    Several language applications often require word semantics as a core part of their processing pipeline either as precise meaning inference or semantic similarity. Multi-sense embeddings (M-SE) can be exploited for this important requirement. M-SE seeks to represent each word by their distinct senses in order to resolve the conflation of meanings of words as used in different contexts. Previous works usually approach this task by training a model on a large corpus and often ignore the effect and usefulness of the semantic relations offered by lexical resources. However, even with large training data, coverage of all possible word senses is still an issue. In addition, a considerable percentage of contextual semantic knowledge is never learned because a huge amount of possible distributional semantic structures are never explored. In this paper, we leverage the rich semantic structures in WordNet using a graph-theoretic walk technique over word senses to enhance the quality of multi-sense embeddings. This algorithm composes enriched texts from the original texts. Furthermore, we derive new distributional semantic similarity measures for M-SE from prior ones. We adapt these measures to the word sense disambiguation (WSD) aspect of our experiment. We report evaluation results on 11 benchmark datasets involving WSD and Word Similarity tasks and show that our method for enhancing distributional semantic structures improves embeddings quality on the baselines. Despite the small training data, it achieves state-of-the-art performance on some of the datasets.

  • Název v anglickém jazyce

    EDS-MEMBED: Multi-sense embeddings based on enhanced distributional semantic structures via a graph walk over word senses

  • Popis výsledku anglicky

    Several language applications often require word semantics as a core part of their processing pipeline either as precise meaning inference or semantic similarity. Multi-sense embeddings (M-SE) can be exploited for this important requirement. M-SE seeks to represent each word by their distinct senses in order to resolve the conflation of meanings of words as used in different contexts. Previous works usually approach this task by training a model on a large corpus and often ignore the effect and usefulness of the semantic relations offered by lexical resources. However, even with large training data, coverage of all possible word senses is still an issue. In addition, a considerable percentage of contextual semantic knowledge is never learned because a huge amount of possible distributional semantic structures are never explored. In this paper, we leverage the rich semantic structures in WordNet using a graph-theoretic walk technique over word senses to enhance the quality of multi-sense embeddings. This algorithm composes enriched texts from the original texts. Furthermore, we derive new distributional semantic similarity measures for M-SE from prior ones. We adapt these measures to the word sense disambiguation (WSD) aspect of our experiment. We report evaluation results on 11 benchmark datasets involving WSD and Word Similarity tasks and show that our method for enhancing distributional semantic structures improves embeddings quality on the baselines. Despite the small training data, it achieves state-of-the-art performance on some of the datasets.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Knowledge-Based Systems

  • ISSN

    0950-7051

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    219

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    106902

  • Kód UT WoS článku

    000634868500007

  • EID výsledku v databázi Scopus

    2-s2.0-85101859687