Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Counting Minimal Unsatisfiable Subsets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00122309" target="_blank" >RIV/00216224:14330/21:00122309 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-81688-9_15" target="_blank" >http://dx.doi.org/10.1007/978-3-030-81688-9_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-81688-9_15" target="_blank" >10.1007/978-3-030-81688-9_15</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Counting Minimal Unsatisfiable Subsets

  • Popis výsledku v původním jazyce

    Given an unsatisfiable Boolean formula F in CNF, an unsatisfiable subset of clauses U of F is called Minimal Unsatisfiable Subset (MUS) if every proper subset of U is satisfiable. Since MUSes serve as explanations for the unsatisfiability of F, MUSes find applications in a wide variety of domains. The availability of efficient SAT solvers has aided the development of scalable techniques for finding and enumerating MUSes in the past two decades. Building on the recent developments in the design of scalable model counting techniques for SAT, Bendik and Meel initiated the study of MUS counting techniques. They succeeded in designing the first approximate MUS counter, AMUSIC, that does not rely on exhaustive MUS enumeration. AMUSIC, however, suffers from two shortcomings: the lack of exact estimates and limited scalability due to its reliance on 3-QBF solvers. In this work, we address the two shortcomings of AMUSIC by designing the first exact MUS counter, CountMUST, that does not rely on exhaustive enumeration. CountMUST circumvents the need for 3-QBF solvers by reducing the problem of MUS counting to projected model counting. While projected model counting is #NP-hard, the past few years have witnessed the development of scalable projected model counters. An extensive empirical evaluation demonstrates that CountMUST successfully returns MUS count for 1500 instances while AMUSIC and enumeration-based techniques could only handle up to 833 instances.

  • Název v anglickém jazyce

    Counting Minimal Unsatisfiable Subsets

  • Popis výsledku anglicky

    Given an unsatisfiable Boolean formula F in CNF, an unsatisfiable subset of clauses U of F is called Minimal Unsatisfiable Subset (MUS) if every proper subset of U is satisfiable. Since MUSes serve as explanations for the unsatisfiability of F, MUSes find applications in a wide variety of domains. The availability of efficient SAT solvers has aided the development of scalable techniques for finding and enumerating MUSes in the past two decades. Building on the recent developments in the design of scalable model counting techniques for SAT, Bendik and Meel initiated the study of MUS counting techniques. They succeeded in designing the first approximate MUS counter, AMUSIC, that does not rely on exhaustive MUS enumeration. AMUSIC, however, suffers from two shortcomings: the lack of exact estimates and limited scalability due to its reliance on 3-QBF solvers. In this work, we address the two shortcomings of AMUSIC by designing the first exact MUS counter, CountMUST, that does not rely on exhaustive enumeration. CountMUST circumvents the need for 3-QBF solvers by reducing the problem of MUS counting to projected model counting. While projected model counting is #NP-hard, the past few years have witnessed the development of scalable projected model counters. An extensive empirical evaluation demonstrates that CountMUST successfully returns MUS count for 1500 instances while AMUSIC and enumeration-based techniques could only handle up to 833 instances.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computer Aided Verification - 33rd International Conference

  • ISBN

    9783030816872

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    24

  • Strana od-do

    313-336

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Cham

  • Datum konání akce

    1. 1. 2021

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku

    000693429500015