Approximate Counting of Minimal Unsatisfiable Subsets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115568" target="_blank" >RIV/00216224:14330/20:00115568 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-53288-8_21" target="_blank" >http://dx.doi.org/10.1007/978-3-030-53288-8_21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-53288-8_21" target="_blank" >10.1007/978-3-030-53288-8_21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate Counting of Minimal Unsatisfiable Subsets
Popis výsledku v původním jazyce
Given an unsatisfiable formula F in CNF, i.e. a set of clauses, the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify the minimal subset of clauses N subset F such that N is unsatisfiable. The emerging viewpoint of MUSes as the root causes of unsatisfiability has led MUSes to find applications in a wide variety of diagnostic approaches. Recent advances in finding and enumeration of MUSes have motivated researchers to discover applications that can benefit from rich information about the set of MUSes. One such extension is that of counting the number of MUSes, which has shown to describe the inconsistency metrics for general propositional knowledge bases. The current best approach for MUS counting is to employ a MUS enumeration algorithm, which often does not scale for the cases with a reasonably large number of MUSes. Motivated by the success of hashing-based techniques in the context of model counting, we design the first approximate counting procedure with (epsilon,delta) guarantees, called AMUSIC. Our approach avoids exhaustive MUS enumeration by combining the classical technique of universal hashing with advances in QBF solvers along with a novel usage of union and intersection of MUSes to achieve runtime efficiency. Our prototype implementation of AMUSIC is shown to scale to instances that were clearly beyond the reach of enumeration-based approaches.
Název v anglickém jazyce
Approximate Counting of Minimal Unsatisfiable Subsets
Popis výsledku anglicky
Given an unsatisfiable formula F in CNF, i.e. a set of clauses, the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify the minimal subset of clauses N subset F such that N is unsatisfiable. The emerging viewpoint of MUSes as the root causes of unsatisfiability has led MUSes to find applications in a wide variety of diagnostic approaches. Recent advances in finding and enumeration of MUSes have motivated researchers to discover applications that can benefit from rich information about the set of MUSes. One such extension is that of counting the number of MUSes, which has shown to describe the inconsistency metrics for general propositional knowledge bases. The current best approach for MUS counting is to employ a MUS enumeration algorithm, which often does not scale for the cases with a reasonably large number of MUSes. Motivated by the success of hashing-based techniques in the context of model counting, we design the first approximate counting procedure with (epsilon,delta) guarantees, called AMUSIC. Our approach avoids exhaustive MUS enumeration by combining the classical technique of universal hashing with advances in QBF solvers along with a novel usage of union and intersection of MUSes to achieve runtime efficiency. Our prototype implementation of AMUSIC is shown to scale to instances that were clearly beyond the reach of enumeration-based approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Aided Verification - 32nd International Conference, CAV 2020
ISBN
9783030532871
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
24
Strana od-do
439-462
Název nakladatele
Springer, Cham
Místo vydání
Neuveden
Místo konání akce
Online
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000695276000021