Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximate Counting of Minimal Unsatisfiable Subsets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115568" target="_blank" >RIV/00216224:14330/20:00115568 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-53288-8_21" target="_blank" >http://dx.doi.org/10.1007/978-3-030-53288-8_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-53288-8_21" target="_blank" >10.1007/978-3-030-53288-8_21</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximate Counting of Minimal Unsatisfiable Subsets

  • Popis výsledku v původním jazyce

    Given an unsatisfiable formula F in CNF, i.e. a set of clauses, the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify the minimal subset of clauses N subset F such that N is unsatisfiable. The emerging viewpoint of MUSes as the root causes of unsatisfiability has led MUSes to find applications in a wide variety of diagnostic approaches. Recent advances in finding and enumeration of MUSes have motivated researchers to discover applications that can benefit from rich information about the set of MUSes. One such extension is that of counting the number of MUSes, which has shown to describe the inconsistency metrics for general propositional knowledge bases. The current best approach for MUS counting is to employ a MUS enumeration algorithm, which often does not scale for the cases with a reasonably large number of MUSes. Motivated by the success of hashing-based techniques in the context of model counting, we design the first approximate counting procedure with (epsilon,delta) guarantees, called AMUSIC. Our approach avoids exhaustive MUS enumeration by combining the classical technique of universal hashing with advances in QBF solvers along with a novel usage of union and intersection of MUSes to achieve runtime efficiency. Our prototype implementation of AMUSIC is shown to scale to instances that were clearly beyond the reach of enumeration-based approaches.

  • Název v anglickém jazyce

    Approximate Counting of Minimal Unsatisfiable Subsets

  • Popis výsledku anglicky

    Given an unsatisfiable formula F in CNF, i.e. a set of clauses, the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify the minimal subset of clauses N subset F such that N is unsatisfiable. The emerging viewpoint of MUSes as the root causes of unsatisfiability has led MUSes to find applications in a wide variety of diagnostic approaches. Recent advances in finding and enumeration of MUSes have motivated researchers to discover applications that can benefit from rich information about the set of MUSes. One such extension is that of counting the number of MUSes, which has shown to describe the inconsistency metrics for general propositional knowledge bases. The current best approach for MUS counting is to employ a MUS enumeration algorithm, which often does not scale for the cases with a reasonably large number of MUSes. Motivated by the success of hashing-based techniques in the context of model counting, we design the first approximate counting procedure with (epsilon,delta) guarantees, called AMUSIC. Our approach avoids exhaustive MUS enumeration by combining the classical technique of universal hashing with advances in QBF solvers along with a novel usage of union and intersection of MUSes to achieve runtime efficiency. Our prototype implementation of AMUSIC is shown to scale to instances that were clearly beyond the reach of enumeration-based approaches.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computer Aided Verification - 32nd International Conference, CAV 2020

  • ISBN

    9783030532871

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    24

  • Strana od-do

    439-462

  • Název nakladatele

    Springer, Cham

  • Místo vydání

    Neuveden

  • Místo konání akce

    Online

  • Datum konání akce

    1. 1. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000695276000021