PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00124927" target="_blank" >RIV/00216224:14330/21:00124927 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0097849321000522" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0097849321000522</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cag.2021.04.010" target="_blank" >10.1016/j.cag.2021.04.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support
Popis výsledku v původním jazyce
Radiotherapy (RT) requires meticulous planning prior to treatment, where the RT plan is optimized with organ delineations on a pre-treatment Computed Tomography (CT) scan of the patient. The conventionally fractionated treatment usually lasts several weeks. Random changes (e.g., rectal and bladder filling in prostate cancer patients) and systematic changes (e.g., weight loss) occur while the patient is being treated. Therefore, the delivered dose distribution may deviate from the planned. Modern technology, in particular image guidance, allows to minimize these deviations, but risks for the patient remain. We present PREVIS: a visual analytics tool for (i) the exploration and prediction of changes in patient anatomy during the upcoming treatment, and (ii) the assessment of treatment strategies, with respect to the anticipated changes. Records of during-treatment changes from a retrospective imaging cohort with complete data are employed in PREVIS, to infer expected anatomical changes of new incoming patients with incomplete data, using a generative model. Abstracted representations of the retrospective cohort partitioning provide insight into an underlying automated clustering, showing main modes of variation for past patients. Interactive similarity representations support an informed selection of matching between new incoming patients and past patients. A Principal Component Analysis (PCA)-based generative model describes the predicted spatial probability distributions of the incoming patient’s organs in the upcoming weeks of treatment, based on observations of past patients. The generative model is interactively linked to treatment plan evaluation, supporting the selection of the optimal treatment strategy. We present a usage scenario, demonstrating the applicability of PREVIS in a clinical research setting, and we evaluate our visual analytics tool with eight clinical researchers.
Název v anglickém jazyce
PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support
Popis výsledku anglicky
Radiotherapy (RT) requires meticulous planning prior to treatment, where the RT plan is optimized with organ delineations on a pre-treatment Computed Tomography (CT) scan of the patient. The conventionally fractionated treatment usually lasts several weeks. Random changes (e.g., rectal and bladder filling in prostate cancer patients) and systematic changes (e.g., weight loss) occur while the patient is being treated. Therefore, the delivered dose distribution may deviate from the planned. Modern technology, in particular image guidance, allows to minimize these deviations, but risks for the patient remain. We present PREVIS: a visual analytics tool for (i) the exploration and prediction of changes in patient anatomy during the upcoming treatment, and (ii) the assessment of treatment strategies, with respect to the anticipated changes. Records of during-treatment changes from a retrospective imaging cohort with complete data are employed in PREVIS, to infer expected anatomical changes of new incoming patients with incomplete data, using a generative model. Abstracted representations of the retrospective cohort partitioning provide insight into an underlying automated clustering, showing main modes of variation for past patients. Interactive similarity representations support an informed selection of matching between new incoming patients and past patients. A Principal Component Analysis (PCA)-based generative model describes the predicted spatial probability distributions of the incoming patient’s organs in the upcoming weeks of treatment, based on observations of past patients. The generative model is interactively linked to treatment plan evaluation, supporting the selection of the optimal treatment strategy. We present a usage scenario, demonstrating the applicability of PREVIS in a clinical research setting, and we evaluate our visual analytics tool with eight clinical researchers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Graphics
ISSN
0097-8493
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
126-138
Kód UT WoS článku
000661427000001
EID výsledku v databázi Scopus
2-s2.0-85105467298