Understanding the impact of statistical and machine learning choices on predictive models for radiotherapy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126656" target="_blank" >RIV/00216224:14330/22:00126656 - isvavai.cz</a>
Výsledek na webu
<a href="https://diglib.eg.org/handle/10.2312/vcbm20221188" target="_blank" >https://diglib.eg.org/handle/10.2312/vcbm20221188</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2312/vcbm.20221188" target="_blank" >10.2312/vcbm.20221188</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding the impact of statistical and machine learning choices on predictive models for radiotherapy
Popis výsledku v původním jazyce
During radiotherapy (RT) planning, an accurate description of the location and shape of the pelvic organs is a critical factor for the successful treatment of the patient. Yet, during treatment, the pelvis anatomy may differ significantly from the planning phase. A series of recent publications, such as PREVIS [FMCM∗21], have examined alternative approaches to analyzing and predicting pelvic organ variability of individual patients. These approaches are based on a combination of several statistical and machine learning methods, which have not been thoroughly and quantitatively evaluated within the scope of pelvic anatomical variability. Several of their design decisions could have an impact on the outcome of the predictive model. The goal of this work is to assess the impact of alternative choices, focusing mainly on the two key-aspects of shape description and clustering, to generate better predictions for new patients. The results of our assessment indicate that resolution-based descriptors provide more accurate and reliable organ representations than state-of-the-art approaches, while different clustering settings (distance metric and linkage) yield only slightly different clusters. Different clustering methods are able to provide comparable results, although when more shape variability is considered their results start to deviate. These results are valuable for understanding the impact of statistical and machine learning choices on the outcomes of predictive models for anatomical variability.
Název v anglickém jazyce
Understanding the impact of statistical and machine learning choices on predictive models for radiotherapy
Popis výsledku anglicky
During radiotherapy (RT) planning, an accurate description of the location and shape of the pelvic organs is a critical factor for the successful treatment of the patient. Yet, during treatment, the pelvis anatomy may differ significantly from the planning phase. A series of recent publications, such as PREVIS [FMCM∗21], have examined alternative approaches to analyzing and predicting pelvic organ variability of individual patients. These approaches are based on a combination of several statistical and machine learning methods, which have not been thoroughly and quantitatively evaluated within the scope of pelvic anatomical variability. Several of their design decisions could have an impact on the outcome of the predictive model. The goal of this work is to assess the impact of alternative choices, focusing mainly on the two key-aspects of shape description and clustering, to generate better predictions for new patients. The results of our assessment indicate that resolution-based descriptors provide more accurate and reliable organ representations than state-of-the-art approaches, while different clustering settings (distance metric and linkage) yield only slightly different clusters. Different clustering methods are able to provide comparable results, although when more shape variability is considered their results start to deviate. These results are valuable for understanding the impact of statistical and machine learning choices on the outcomes of predictive models for anatomical variability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Eurographics Workshop on Visual Computing for Biology and Medicine
ISBN
9783038681779
ISSN
2070-5786
e-ISSN
2070-5778
Počet stran výsledku
5
Strana od-do
65-69
Název nakladatele
The Eurographics Association
Místo vydání
Neuveden
Místo konání akce
Vienna
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—