Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Understanding the impact of statistical and machine learning choices on predictive models for radiotherapy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126656" target="_blank" >RIV/00216224:14330/22:00126656 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://diglib.eg.org/handle/10.2312/vcbm20221188" target="_blank" >https://diglib.eg.org/handle/10.2312/vcbm20221188</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2312/vcbm.20221188" target="_blank" >10.2312/vcbm.20221188</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Understanding the impact of statistical and machine learning choices on predictive models for radiotherapy

  • Popis výsledku v původním jazyce

    During radiotherapy (RT) planning, an accurate description of the location and shape of the pelvic organs is a critical factor for the successful treatment of the patient. Yet, during treatment, the pelvis anatomy may differ significantly from the planning phase. A series of recent publications, such as PREVIS [FMCM∗21], have examined alternative approaches to analyzing and predicting pelvic organ variability of individual patients. These approaches are based on a combination of several statistical and machine learning methods, which have not been thoroughly and quantitatively evaluated within the scope of pelvic anatomical variability. Several of their design decisions could have an impact on the outcome of the predictive model. The goal of this work is to assess the impact of alternative choices, focusing mainly on the two key-aspects of shape description and clustering, to generate better predictions for new patients. The results of our assessment indicate that resolution-based descriptors provide more accurate and reliable organ representations than state-of-the-art approaches, while different clustering settings (distance metric and linkage) yield only slightly different clusters. Different clustering methods are able to provide comparable results, although when more shape variability is considered their results start to deviate. These results are valuable for understanding the impact of statistical and machine learning choices on the outcomes of predictive models for anatomical variability.

  • Název v anglickém jazyce

    Understanding the impact of statistical and machine learning choices on predictive models for radiotherapy

  • Popis výsledku anglicky

    During radiotherapy (RT) planning, an accurate description of the location and shape of the pelvic organs is a critical factor for the successful treatment of the patient. Yet, during treatment, the pelvis anatomy may differ significantly from the planning phase. A series of recent publications, such as PREVIS [FMCM∗21], have examined alternative approaches to analyzing and predicting pelvic organ variability of individual patients. These approaches are based on a combination of several statistical and machine learning methods, which have not been thoroughly and quantitatively evaluated within the scope of pelvic anatomical variability. Several of their design decisions could have an impact on the outcome of the predictive model. The goal of this work is to assess the impact of alternative choices, focusing mainly on the two key-aspects of shape description and clustering, to generate better predictions for new patients. The results of our assessment indicate that resolution-based descriptors provide more accurate and reliable organ representations than state-of-the-art approaches, while different clustering settings (distance metric and linkage) yield only slightly different clusters. Different clustering methods are able to provide comparable results, although when more shape variability is considered their results start to deviate. These results are valuable for understanding the impact of statistical and machine learning choices on the outcomes of predictive models for anatomical variability.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Eurographics Workshop on Visual Computing for Biology and Medicine

  • ISBN

    9783038681779

  • ISSN

    2070-5786

  • e-ISSN

    2070-5778

  • Počet stran výsledku

    5

  • Strana od-do

    65-69

  • Název nakladatele

    The Eurographics Association

  • Místo vydání

    Neuveden

  • Místo konání akce

    Vienna

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku