Possibilities of quantification of factors influencing the aircraft ground handling process and TOBT prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00372103" target="_blank" >RIV/68407700:21260/23:00372103 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.trpro.2023.12.009" target="_blank" >https://doi.org/10.1016/j.trpro.2023.12.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trpro.2023.12.009" target="_blank" >10.1016/j.trpro.2023.12.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Possibilities of quantification of factors influencing the aircraft ground handling process and TOBT prediction
Popis výsledku v původním jazyce
The subject of this paper is to summarize current research in the area of aircraft departure delay prediction based on machine learning algorithms and to confirm the relevancy of the identified variables (factors) whose implementation into predictive models could improve their accuracy and thus the ability to accurately predict the Target Off Block Time (TOBT) at Collaborative Decision Making (CDM) airport. In order to predict delays, several prediction models have been developed. One of the large categories of mathematical models are machine learning methods. The article includes a comprehensive literature review focused on machine learning algorithms confirming that none of those approaches used data from aircraft ground handling to predict aircraft departure delays, mainly due to ground handling data availability and scope of the research. The paper describes variables that could extend the existing machine learning prediction models. This research is supported with the real operational data from Václav Havel Airport Prague. The case study at Prague airport verifies a correlation of proposed variables with TOBT time. In several cases, a strong correlation between the proposed variables and TOBT was confirmed.
Název v anglickém jazyce
Possibilities of quantification of factors influencing the aircraft ground handling process and TOBT prediction
Popis výsledku anglicky
The subject of this paper is to summarize current research in the area of aircraft departure delay prediction based on machine learning algorithms and to confirm the relevancy of the identified variables (factors) whose implementation into predictive models could improve their accuracy and thus the ability to accurately predict the Target Off Block Time (TOBT) at Collaborative Decision Making (CDM) airport. In order to predict delays, several prediction models have been developed. One of the large categories of mathematical models are machine learning methods. The article includes a comprehensive literature review focused on machine learning algorithms confirming that none of those approaches used data from aircraft ground handling to predict aircraft departure delays, mainly due to ground handling data availability and scope of the research. The paper describes variables that could extend the existing machine learning prediction models. This research is supported with the real operational data from Václav Havel Airport Prague. The case study at Prague airport verifies a correlation of proposed variables with TOBT time. In several cases, a strong correlation between the proposed variables and TOBT was confirmed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Transportation Research Procedia - INAIR 2023
ISBN
—
ISSN
2352-1457
e-ISSN
2352-1465
Počet stran výsledku
9
Strana od-do
68-76
Název nakladatele
Elsevier BV
Místo vydání
Linz
Místo konání akce
Tartu
Datum konání akce
15. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—