Strong Cliques in Claw-Free Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00129837" target="_blank" >RIV/00216224:14330/21:00129837 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00373-021-02379-6" target="_blank" >http://dx.doi.org/10.1007/s00373-021-02379-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-021-02379-6" target="_blank" >10.1007/s00373-021-02379-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strong Cliques in Claw-Free Graphs
Popis výsledku v původním jazyce
For a graph G, L(G)(2) is the square of the line graph of G - that is, vertices of L(G)(2) are edges of G and two edges e, f is an element of EoGTHORN are adjacent in L(G)(2) if at least one vertex of e is adjacent to a vertex of f and e not equal f. The strong chromatic index of G, denoted by s'(G), is the chromatic number of L(G)(2). A strong clique in G is a clique in L(G())2. Finding a bound for the maximum size of a strong clique in a graph with given maximum degree is a problem connected to a famous conjecture of Erdos and Nes. etr.il concerning strong chromatic index of graphs. In this note we prove that a size of a strong clique in a claw-free graph with maximum degree triangle is at most triangle(2) + 1/2 triangle. This result improves the only known result 1:125 triangle(2) + triangle, which is a bound for the strong chromatic index of claw-free graphs.
Název v anglickém jazyce
Strong Cliques in Claw-Free Graphs
Popis výsledku anglicky
For a graph G, L(G)(2) is the square of the line graph of G - that is, vertices of L(G)(2) are edges of G and two edges e, f is an element of EoGTHORN are adjacent in L(G)(2) if at least one vertex of e is adjacent to a vertex of f and e not equal f. The strong chromatic index of G, denoted by s'(G), is the chromatic number of L(G)(2). A strong clique in G is a clique in L(G())2. Finding a bound for the maximum size of a strong clique in a graph with given maximum degree is a problem connected to a famous conjecture of Erdos and Nes. etr.il concerning strong chromatic index of graphs. In this note we prove that a size of a strong clique in a claw-free graph with maximum degree triangle is at most triangle(2) + 1/2 triangle. This result improves the only known result 1:125 triangle(2) + triangle, which is a bound for the strong chromatic index of claw-free graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Graphs and Combinatorics
ISSN
0911-0119
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
2581-2593
Kód UT WoS článku
000676086900002
EID výsledku v databázi Scopus
2-s2.0-85111123933