Comparing RNN and Transformer Context Representations in the Czech Answer Selection Task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125094" target="_blank" >RIV/00216224:14330/22:00125094 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0000155600003116" target="_blank" >http://dx.doi.org/10.5220/0000155600003116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0000155600003116" target="_blank" >10.5220/0000155600003116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing RNN and Transformer Context Representations in the Czech Answer Selection Task
Popis výsledku v původním jazyce
Open domain question answering now inevitably builds upon advanced neural models processing large unstructured textual sources serving as a kind of underlying knowledge base. In case of non-mainstream highly- inflected languages, the state-of-the-art approaches lack large training datasets emphasizing the need for other improvement techniques. In this paper, we present detailed evaluation of a new technique employing various context representations in the answer selection task where the best answer sentence from a candidate document is identified as the most relevant to the human entered question. The input data here consists not only of each sentence in isolation but also of its preceding sentence(s) as the context. We compare seven different context representations including direct recurrent network (RNN) embeddings and several BERT-model based sentence embedding vectors. All experiments are evaluated with a new version 3.1 of the Czech question answering benchmark dataset SQAD wit h possible multiple correct answers as a new feature. The comparison shows that the BERT-based sentence embeddings are able to offer the best context representations reaching the mean average precision results of 83.39% which is a new best score for this dataset.
Název v anglickém jazyce
Comparing RNN and Transformer Context Representations in the Czech Answer Selection Task
Popis výsledku anglicky
Open domain question answering now inevitably builds upon advanced neural models processing large unstructured textual sources serving as a kind of underlying knowledge base. In case of non-mainstream highly- inflected languages, the state-of-the-art approaches lack large training datasets emphasizing the need for other improvement techniques. In this paper, we present detailed evaluation of a new technique employing various context representations in the answer selection task where the best answer sentence from a candidate document is identified as the most relevant to the human entered question. The input data here consists not only of each sentence in isolation but also of its preceding sentence(s) as the context. We compare seven different context representations including direct recurrent network (RNN) embeddings and several BERT-model based sentence embedding vectors. All experiments are evaluated with a new version 3.1 of the Czech question answering benchmark dataset SQAD wit h possible multiple correct answers as a new feature. The comparison shows that the BERT-based sentence embeddings are able to offer the best context representations reaching the mean average precision results of 83.39% which is a new best score for this dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018101" target="_blank" >LM2018101: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART)
ISBN
9789897585470
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
388-394
Název nakladatele
SCITEPRESS
Místo vydání
Portugal
Místo konání akce
Portugal
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—