Joint Learning of Sentence Embeddings for Relevance and Entailment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00301135" target="_blank" >RIV/68407700:21230/16:00301135 - isvavai.cz</a>
Výsledek na webu
<a href="http://aclweb.org/anthology/W16-1602" target="_blank" >http://aclweb.org/anthology/W16-1602</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/W16-1602" target="_blank" >10.18653/v1/W16-1602</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Joint Learning of Sentence Embeddings for Relevance and Entailment
Popis výsledku v původním jazyce
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit perevidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Název v anglickém jazyce
Joint Learning of Sentence Embeddings for Relevance and Entailment
Popis výsledku anglicky
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit perevidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 1st Workshop on Representation Learning for NLP
ISBN
978-1-945626-04-3
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
8-17
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
Stroudsburg
Místo konání akce
Berlin
Datum konání akce
11. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—