Information Extraction from Scanned Invoice Images using Text Analysis and Layout Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125095" target="_blank" >RIV/00216224:14330/22:00125095 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0923596521003015" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0923596521003015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.image.2021.116601" target="_blank" >10.1016/j.image.2021.116601</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information Extraction from Scanned Invoice Images using Text Analysis and Layout Features
Popis výsledku v původním jazyce
While storing invoice content as metadata to avoid paper document processing may be the future trend, almost all of daily issued invoices are still printed on paper or generated in digital formats such as PDFs. In this paper, we introduce the OCRMiner system for information extraction from scanned document images which is based on text analysis techniques in combination with layout features to extract indexing metadata of (semi-)structured documents. The system is designed to process the document in a similar way a human reader uses, i.e. to employ different layout and text attributes in a coordinated decision. The system consists of a set of interconnected modules that start with (possibly erroneous) character-based output from a standard OCR system and allow to apply different techniques and to expand the extracted knowledge at each step. Using an open source OCR, the system is able to recover the invoice data in 90% for English and in 88% for the Czech set.
Název v anglickém jazyce
Information Extraction from Scanned Invoice Images using Text Analysis and Layout Features
Popis výsledku anglicky
While storing invoice content as metadata to avoid paper document processing may be the future trend, almost all of daily issued invoices are still printed on paper or generated in digital formats such as PDFs. In this paper, we introduce the OCRMiner system for information extraction from scanned document images which is based on text analysis techniques in combination with layout features to extract indexing metadata of (semi-)structured documents. The system is designed to process the document in a similar way a human reader uses, i.e. to employ different layout and text attributes in a coordinated decision. The system consists of a set of interconnected modules that start with (possibly erroneous) character-based output from a standard OCR system and allow to apply different techniques and to expand the extracted knowledge at each step. Using an open source OCR, the system is able to recover the invoice data in 90% for English and in 88% for the Czech set.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018101" target="_blank" >LM2018101: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal Processing: Image Communication
ISSN
0923-5965
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000788052500011
EID výsledku v databázi Scopus
2-s2.0-85121961236