Packing and covering directed triangles asymptotically
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125213" target="_blank" >RIV/00216224:14330/22:00125213 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0195669821001566" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0195669821001566</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2021.103462" target="_blank" >10.1016/j.ejc.2021.103462</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Packing and covering directed triangles asymptotically
Popis výsledku v původním jazyce
A well-known conjecture of Tuza asserts that if a graph has at most t pairwise edge-disjoint triangles, then it can be made triangle-free by removing at most 2t edges. If true, the factor 2 would be best possible. In the directed setting, also asked by Tuza, the analogous statement has recently been proven, however, the factor 2 is not optimal. In this paper, we show that if an n-vertex directed graph has at most t pairwise arc-disjoint directed triangles, then there exists a set of at most 1.8t + o(n(2)) arcs that meets all directed triangles. We complement our result by presenting two constructions of large directed graphs with t is an element of Omega(n(2)) whose smallest such set has 1.5t - o(n(2)) arcs. (C) 2021 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Packing and covering directed triangles asymptotically
Popis výsledku anglicky
A well-known conjecture of Tuza asserts that if a graph has at most t pairwise edge-disjoint triangles, then it can be made triangle-free by removing at most 2t edges. If true, the factor 2 would be best possible. In the directed setting, also asked by Tuza, the analogous statement has recently been proven, however, the factor 2 is not optimal. In this paper, we show that if an n-vertex directed graph has at most t pairwise arc-disjoint directed triangles, then there exists a set of at most 1.8t + o(n(2)) arcs that meets all directed triangles. We complement our result by presenting two constructions of large directed graphs with t is an element of Omega(n(2)) whose smallest such set has 1.5t - o(n(2)) arcs. (C) 2021 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
101
Číslo periodika v rámci svazku
103462
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000721356900012
EID výsledku v databázi Scopus
2-s2.0-85119050224