Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Review of cell image synthesis for image processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126356" target="_blank" >RIV/00216224:14330/22:00126356 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/22:10250251

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/B978-0-12-824349-7.00028-1" target="_blank" >http://dx.doi.org/10.1016/B978-0-12-824349-7.00028-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/B978-0-12-824349-7.00028-1" target="_blank" >10.1016/B978-0-12-824349-7.00028-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Review of cell image synthesis for image processing

  • Popis výsledku v původním jazyce

    Opposites attract, also in the biomedical field and during the processing of cell microscopy images. In the same spirit, image processing, the indispensable analyst tool, is often supported by image synthesis applications. Image synthesis is a methodology implemented in computer program intended to create artificial cell images similar to images from real microscopy. The generation of artificial images has had a stable tradition in image processing and is currently gaining more attention with the rising popularity of deep learning. This chapter reviews the current state of cell image synthesis, including terminology, broader context, goals, and peculiarities. It offers a brief historical introspection and, most importantly, surveys all contemporary methodology and applications. The light descriptions of procedural methods with explicit parameters and deep learning-based methods with implicit parameters, such as the generative adversarial networks, are also included. Last but not least, this chapter discusses what kind of artificial images and ground-truth data the methods generate, including the subsequent usage of this data for image processing such as cell segmentation or data augmentation for deep learning. Among the covered methods are approaches generating artificial cell microscopy images of fluorescence stained proteins, actin filaments, chromatin stained nuclei, membranes, and even populations of cells or full cells in differential inference contrast microscopy, to name a few. The generated data is often accompanied by ground truth annotation, whose forms are also discussed, including cell detection markers, full cell segmentation, and cell tracking data.

  • Název v anglickém jazyce

    Review of cell image synthesis for image processing

  • Popis výsledku anglicky

    Opposites attract, also in the biomedical field and during the processing of cell microscopy images. In the same spirit, image processing, the indispensable analyst tool, is often supported by image synthesis applications. Image synthesis is a methodology implemented in computer program intended to create artificial cell images similar to images from real microscopy. The generation of artificial images has had a stable tradition in image processing and is currently gaining more attention with the rising popularity of deep learning. This chapter reviews the current state of cell image synthesis, including terminology, broader context, goals, and peculiarities. It offers a brief historical introspection and, most importantly, surveys all contemporary methodology and applications. The light descriptions of procedural methods with explicit parameters and deep learning-based methods with implicit parameters, such as the generative adversarial networks, are also included. Last but not least, this chapter discusses what kind of artificial images and ground-truth data the methods generate, including the subsequent usage of this data for image processing such as cell segmentation or data augmentation for deep learning. Among the covered methods are approaches generating artificial cell microscopy images of fluorescence stained proteins, actin filaments, chromatin stained nuclei, membranes, and even populations of cells or full cells in differential inference contrast microscopy, to name a few. The generated data is often accompanied by ground truth annotation, whose forms are also discussed, including cell detection markers, full cell segmentation, and cell tracking data.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Biomedical Image Synthesis and Simulation - Methods and Applications

  • ISBN

    9780128243497

  • Počet stran výsledku

    43

  • Strana od-do

    447-489

  • Počet stran knihy

    674

  • Název nakladatele

    Elsevier

  • Místo vydání

    Neuveden

  • Kód UT WoS kapitoly