Fractional meanings of nonrepetitiveness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00129835" target="_blank" >RIV/00216224:14330/22:00129835 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jcta.2022.105598" target="_blank" >https://doi.org/10.1016/j.jcta.2022.105598</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2022.105598" target="_blank" >10.1016/j.jcta.2022.105598</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractional meanings of nonrepetitiveness
Popis výsledku v původním jazyce
A sequence S is called r-nonrepetitive if no tau sequentially adjacent blocks in S are identical. By the classic results of Thue from the beginning of the 20th century, we know that there exist arbitrarily long binary 3-nonrepetitive sequences and ternary 2-nonrepetitive sequences. This discovery stimulated over the years intensive research leading to various generalizations and many exciting problems and results in combinatorics on words. In this paper, we study two fractional versions of nonrepetitive sequences.& nbsp;In the first one, we demand that all subsequences of a sequence S, with gaps bounded by a fixed integer j >= 1, are r-nonrepetitive. (This variant emerged from studying nonrepetitive colorings of the Euclidean plane.) Let pi(r)(r) denote the least size of an alphabet guaranteeing existence pi( j) 1 of arbitrarily long such sequences. We prove that [j/r-1]& nbsp; + 1 <= pi(j)(r) <=& nbsp; 2 [j/r + 1] + 1, for all r >= 3 and j >= 1. We also consider r-1 a more general situation with the gap bound j being a real number, and apply this to nonrepetitive coloring of the plane. The second variant allows for using a "fractional " alphabet, analogously as for the fractional coloring of graphs. More specifically, we look for sequences of b -element subsets B-1,B- B-2, ... of an a-element alphabet, with the ratio a/b as small as possible, such that every member of the Cartesian product B-1 x B-2 x . . . is r-nonrepetitive. By using the entropy compression argument, we prove that the corresponding parameter pi(f )(r) = inf a/b & nbsp;can be arbitrarily close to 1 for sufficiently large r. (C) 2022 Elsevier Inc. All rights reserved.& nbsp;
Název v anglickém jazyce
Fractional meanings of nonrepetitiveness
Popis výsledku anglicky
A sequence S is called r-nonrepetitive if no tau sequentially adjacent blocks in S are identical. By the classic results of Thue from the beginning of the 20th century, we know that there exist arbitrarily long binary 3-nonrepetitive sequences and ternary 2-nonrepetitive sequences. This discovery stimulated over the years intensive research leading to various generalizations and many exciting problems and results in combinatorics on words. In this paper, we study two fractional versions of nonrepetitive sequences.& nbsp;In the first one, we demand that all subsequences of a sequence S, with gaps bounded by a fixed integer j >= 1, are r-nonrepetitive. (This variant emerged from studying nonrepetitive colorings of the Euclidean plane.) Let pi(r)(r) denote the least size of an alphabet guaranteeing existence pi( j) 1 of arbitrarily long such sequences. We prove that [j/r-1]& nbsp; + 1 <= pi(j)(r) <=& nbsp; 2 [j/r + 1] + 1, for all r >= 3 and j >= 1. We also consider r-1 a more general situation with the gap bound j being a real number, and apply this to nonrepetitive coloring of the plane. The second variant allows for using a "fractional " alphabet, analogously as for the fractional coloring of graphs. More specifically, we look for sequences of b -element subsets B-1,B- B-2, ... of an a-element alphabet, with the ratio a/b as small as possible, such that every member of the Cartesian product B-1 x B-2 x . . . is r-nonrepetitive. By using the entropy compression argument, we prove that the corresponding parameter pi(f )(r) = inf a/b & nbsp;can be arbitrarily close to 1 for sufficiently large r. (C) 2022 Elsevier Inc. All rights reserved.& nbsp;
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory, Series A
ISSN
0097-3165
e-ISSN
—
Svazek periodika
189
Číslo periodika v rámci svazku
105598
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000793602100009
EID výsledku v databázi Scopus
2-s2.0-85125859521