Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fractional meanings of nonrepetitiveness

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00129835" target="_blank" >RIV/00216224:14330/22:00129835 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jcta.2022.105598" target="_blank" >https://doi.org/10.1016/j.jcta.2022.105598</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcta.2022.105598" target="_blank" >10.1016/j.jcta.2022.105598</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fractional meanings of nonrepetitiveness

  • Popis výsledku v původním jazyce

    A sequence S is called r-nonrepetitive if no tau sequentially adjacent blocks in S are identical. By the classic results of Thue from the beginning of the 20th century, we know that there exist arbitrarily long binary 3-nonrepetitive sequences and ternary 2-nonrepetitive sequences. This discovery stimulated over the years intensive research leading to various generalizations and many exciting problems and results in combinatorics on words. In this paper, we study two fractional versions of nonrepetitive sequences.&amp; nbsp;In the first one, we demand that all subsequences of a sequence S, with gaps bounded by a fixed integer j &gt;= 1, are r-nonrepetitive. (This variant emerged from studying nonrepetitive colorings of the Euclidean plane.) Let pi(r)(r) denote the least size of an alphabet guaranteeing existence pi( j) 1 of arbitrarily long such sequences. We prove that [j/r-1]&amp; nbsp; + 1 &lt;= pi(j)(r) &lt;=&amp; nbsp; 2 [j/r + 1] + 1, for all r &gt;= 3 and j &gt;= 1. We also consider r-1 a more general situation with the gap bound j being a real number, and apply this to nonrepetitive coloring of the plane. The second variant allows for using a "fractional " alphabet, analogously as for the fractional coloring of graphs. More specifically, we look for sequences of b -element subsets B-1,B- B-2, ... of an a-element alphabet, with the ratio a/b as small as possible, such that every member of the Cartesian product B-1 x B-2 x . . . is r-nonrepetitive. By using the entropy compression argument, we prove that the corresponding parameter pi(f )(r) = inf a/b &amp; nbsp;can be arbitrarily close to 1 for sufficiently large r. (C) 2022 Elsevier Inc. All rights reserved.&amp; nbsp;

  • Název v anglickém jazyce

    Fractional meanings of nonrepetitiveness

  • Popis výsledku anglicky

    A sequence S is called r-nonrepetitive if no tau sequentially adjacent blocks in S are identical. By the classic results of Thue from the beginning of the 20th century, we know that there exist arbitrarily long binary 3-nonrepetitive sequences and ternary 2-nonrepetitive sequences. This discovery stimulated over the years intensive research leading to various generalizations and many exciting problems and results in combinatorics on words. In this paper, we study two fractional versions of nonrepetitive sequences.&amp; nbsp;In the first one, we demand that all subsequences of a sequence S, with gaps bounded by a fixed integer j &gt;= 1, are r-nonrepetitive. (This variant emerged from studying nonrepetitive colorings of the Euclidean plane.) Let pi(r)(r) denote the least size of an alphabet guaranteeing existence pi( j) 1 of arbitrarily long such sequences. We prove that [j/r-1]&amp; nbsp; + 1 &lt;= pi(j)(r) &lt;=&amp; nbsp; 2 [j/r + 1] + 1, for all r &gt;= 3 and j &gt;= 1. We also consider r-1 a more general situation with the gap bound j being a real number, and apply this to nonrepetitive coloring of the plane. The second variant allows for using a "fractional " alphabet, analogously as for the fractional coloring of graphs. More specifically, we look for sequences of b -element subsets B-1,B- B-2, ... of an a-element alphabet, with the ratio a/b as small as possible, such that every member of the Cartesian product B-1 x B-2 x . . . is r-nonrepetitive. By using the entropy compression argument, we prove that the corresponding parameter pi(f )(r) = inf a/b &amp; nbsp;can be arbitrarily close to 1 for sufficiently large r. (C) 2022 Elsevier Inc. All rights reserved.&amp; nbsp;

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Combinatorial Theory, Series A

  • ISSN

    0097-3165

  • e-ISSN

  • Svazek periodika

    189

  • Číslo periodika v rámci svazku

    105598

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

    1-22

  • Kód UT WoS článku

    000793602100009

  • EID výsledku v databázi Scopus

    2-s2.0-85125859521