Machine learning approaches for predicting the onset time of the adverse drug events in oncology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00135025" target="_blank" >RIV/00216224:14330/22:00135025 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00209805:_____/22:00079086
Výsledek na webu
<a href="https://doi.org/10.1016/j.mlwa.2022.100367" target="_blank" >https://doi.org/10.1016/j.mlwa.2022.100367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mlwa.2022.100367" target="_blank" >10.1016/j.mlwa.2022.100367</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning approaches for predicting the onset time of the adverse drug events in oncology
Popis výsledku v původním jazyce
Predicting the onset time of adverse drug events can substantially lessen the negative impact on the prognosis of cancer patients who are often subject of aggressive and highly toxic treatment regimens. However, the laboratory verification of each patient case to study the mechanics of adverse drug events requires costly, time-intensive research. Thus, to alleviate the efforts required to tackle this problem, using computational models is highly desirable. To provide a suite of such applicable models, we used openly available adverse drug event data resources called FAERS and explored various machine learning paradigms to assess their performance in predicting adverse effect onset days (since the beginning of the treatment). Among various machine learning approaches, we observed that the graph-based embedding model, particularly ComplEx, performed better than other, more traditional machine learning approaches. The embedding learned from the ComplEX trained with k-NN regression for the downstream predictive task obtained the lowest root mean square error, which we consider very promising for further research.
Název v anglickém jazyce
Machine learning approaches for predicting the onset time of the adverse drug events in oncology
Popis výsledku anglicky
Predicting the onset time of adverse drug events can substantially lessen the negative impact on the prognosis of cancer patients who are often subject of aggressive and highly toxic treatment regimens. However, the laboratory verification of each patient case to study the mechanics of adverse drug events requires costly, time-intensive research. Thus, to alleviate the efforts required to tackle this problem, using computational models is highly desirable. To provide a suite of such applicable models, we used openly available adverse drug event data resources called FAERS and explored various machine learning paradigms to assess their performance in predicting adverse effect onset days (since the beginning of the treatment). Among various machine learning approaches, we observed that the graph-based embedding model, particularly ComplEx, performed better than other, more traditional machine learning approaches. The embedding learned from the ComplEX trained with k-NN regression for the downstream predictive task obtained the lowest root mean square error, which we consider very promising for further research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Learning with Applications
ISSN
2666-8270
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
100367
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
001221469200005
EID výsledku v databázi Scopus
—