Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Clique-Width of Point Configurations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00129924" target="_blank" >RIV/00216224:14330/23:00129924 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jctb.2021.09.001" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2021.09.001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2021.09.001" target="_blank" >10.1016/j.jctb.2021.09.001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Clique-Width of Point Configurations

  • Popis výsledku v původním jazyce

    While structural width parameters (of the input) belong to the standard toolbox of graph algorithms, it is not the usual case in computational geometry. As a case study we propose a natural extension of the structural graph parameter of clique-width to geometric point configurations represented by their order type. We study basic properties of this clique-width notion, and show that it is aligned with the general concept of clique-width of relational structures by Blumensath and Courcelle (2006). We also relate the new notion to monadic second-order logic of point configurations. As an application, we provide several linear FPT time algorithms for geometric point problems which are NP-hard in general, in the special case that the input point set is of bounded clique-width and the clique-width expression is also given.

  • Název v anglickém jazyce

    Clique-Width of Point Configurations

  • Popis výsledku anglicky

    While structural width parameters (of the input) belong to the standard toolbox of graph algorithms, it is not the usual case in computational geometry. As a case study we propose a natural extension of the structural graph parameter of clique-width to geometric point configurations represented by their order type. We study basic properties of this clique-width notion, and show that it is aligned with the general concept of clique-width of relational structures by Blumensath and Courcelle (2006). We also relate the new notion to monadic second-order logic of point configurations. As an application, we provide several linear FPT time algorithms for geometric point problems which are NP-hard in general, in the special case that the input point set is of bounded clique-width and the clique-width expression is also given.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-04567S" target="_blank" >GA20-04567S: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Combinatorial Theory, Ser B

  • ISSN

    0095-8956

  • e-ISSN

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    31

  • Strana od-do

    43-73

  • Kód UT WoS článku

    000901805500003

  • EID výsledku v databázi Scopus

    2-s2.0-85115385971