Výpočet Tuttova polynomu na grafech omezené clique-width
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00015726" target="_blank" >RIV/00216224:14330/06:00015726 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing the Tutte Polynomial on Graphs of Bounded Clique-Width
Popis výsledku v původním jazyce
The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs withoutinduced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs, and extend it to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.
Název v anglickém jazyce
Computing the Tutte Polynomial on Graphs of Bounded Clique-Width
Popis výsledku anglicky
The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs withoutinduced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs, and extend it to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
1095-7146
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
932-946
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—