Soft Alignment Objectives for Robust Adaptation of Language Generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130912" target="_blank" >RIV/00216224:14330/23:00130912 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.acl-long.492" target="_blank" >https://aclanthology.org/2023.acl-long.492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.acl-long.492" target="_blank" >10.18653/v1/2023.acl-long.492</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soft Alignment Objectives for Robust Adaptation of Language Generation
Popis výsledku v původním jazyce
Domain adaptation allows generative language models to address specific flaws caused by the domain shift of their application. However, the traditional adaptation by further training on in-domain data rapidly weakens the model's ability to generalize to other domains, making the open-ended deployments of the adapted models prone to errors. This work introduces novel training objectives built upon a semantic similarity of the predicted tokens to the reference. Our results show that (1) avoiding the common assumption of a single correct prediction by constructing the training target from tokens' semantic similarity can largely mitigate catastrophic forgetting of adaptation, while (2) preserving the adaptation in-domain quality, (3) with negligible additions to compute costs. In the broader context, the objectives grounded in a continuous token similarity pioneer the exploration of the middle ground between the efficient but na"{i}ve exact-match token-level objectives and expressive but computationally- and resource-intensive sequential objectives.
Název v anglickém jazyce
Soft Alignment Objectives for Robust Adaptation of Language Generation
Popis výsledku anglicky
Domain adaptation allows generative language models to address specific flaws caused by the domain shift of their application. However, the traditional adaptation by further training on in-domain data rapidly weakens the model's ability to generalize to other domains, making the open-ended deployments of the adapted models prone to errors. This work introduces novel training objectives built upon a semantic similarity of the predicted tokens to the reference. Our results show that (1) avoiding the common assumption of a single correct prediction by constructing the training target from tokens' semantic similarity can largely mitigate catastrophic forgetting of adaptation, while (2) preserving the adaptation in-domain quality, (3) with negligible additions to compute costs. In the broader context, the objectives grounded in a continuous token similarity pioneer the exploration of the middle ground between the efficient but na"{i}ve exact-match token-level objectives and expressive but computationally- and resource-intensive sequential objectives.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
ISBN
9781959429722
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
17
Strana od-do
8837-8853
Název nakladatele
Association for Computational Linguistics
Místo vydání
Toronto, Canada
Místo konání akce
Toronto, Canada
Datum konání akce
9. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—