Sparse Graphs of Twin-width 2 Have Bounded Tree-width
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131580" target="_blank" >RIV/00216224:14330/23:00131580 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11" target="_blank" >http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11" target="_blank" >10.4230/LIPICS.ISAAC.2023.11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Graphs of Twin-width 2 Have Bounded Tree-width
Popis výsledku v původním jazyce
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.
Název v anglickém jazyce
Sparse Graphs of Twin-width 2 Have Bounded Tree-width
Popis výsledku anglicky
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ISAAC 2023
ISBN
9783959772891
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
„11:1“-„11:13“
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum f{"u}r Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Kyoto, Japan
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—