Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00132396" target="_blank" >RIV/00216224:14330/23:00132396 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fi.muni.cz/usr/sojka/papers/scavnicka-stefanik-sojka-raslan-2023.pdf" target="_blank" >https://www.fi.muni.cz/usr/sojka/papers/scavnicka-stefanik-sojka-raslan-2023.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset
Popis výsledku v původním jazyce
Applications of document processing become increasingly popular across multiple industries, resulting in a growing amount of research on the applications of artificial intelligence in document processing (Document AI). This paper focuses on a subtask of Document AI, Document Visual Question Answering (DVQA), recently getting well-deserved attention thanks to its universality. However, the limited availability of data sources for languages outside English restrains the applicability of DVQA in non-English languages. <p> For this reason, we created the CIVQA (Czech Inovice Visual Question Answering) dataset covering 15 entities of financial documents, consisting of more than 6,000 invoices in the Czech language. </p> <p> We used the CIVQA dataset to create the first-of-its-kind DVQA models specifically tailored for applications to Czech documents. Striving to create DVQA models able to generalize, we specifically evaluate our models on the entities not covered in the training mix and find that multilingual LayoutLM models are able to respond to questions about previously unseen entities substantially more accurately than other models. </p> <p> The CIVQA dataset and experiment observations offer new opportunities for Document AI in the Czech Republic, with potential applications in research and commercial fields.</p>
Název v anglickém jazyce
Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset
Popis výsledku anglicky
Applications of document processing become increasingly popular across multiple industries, resulting in a growing amount of research on the applications of artificial intelligence in document processing (Document AI). This paper focuses on a subtask of Document AI, Document Visual Question Answering (DVQA), recently getting well-deserved attention thanks to its universality. However, the limited availability of data sources for languages outside English restrains the applicability of DVQA in non-English languages. <p> For this reason, we created the CIVQA (Czech Inovice Visual Question Answering) dataset covering 15 entities of financial documents, consisting of more than 6,000 invoices in the Czech language. </p> <p> We used the CIVQA dataset to create the first-of-its-kind DVQA models specifically tailored for applications to Czech documents. Striving to create DVQA models able to generalize, we specifically evaluate our models on the entities not covered in the training mix and find that multilingual LayoutLM models are able to respond to questions about previously unseen entities substantially more accurately than other models. </p> <p> The CIVQA dataset and experiment observations offer new opportunities for Document AI in the Czech Republic, with potential applications in research and commercial fields.</p>
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EG21_374%2F0026711" target="_blank" >EG21_374/0026711: Inteligentní back office</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Recent Advances in Slavonic Natural Language Processing (RASLAN 2023)
ISBN
9788026317937
ISSN
2336-4289
e-ISSN
—
Počet stran výsledku
12
Strana od-do
23-34
Název nakladatele
Tribun EU
Místo vydání
Brno
Místo konání akce
Kouty nad Desnou
Datum konání akce
8. 12. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—