UNIFORM TURAN DENSITY OF CYCLES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133881" target="_blank" >RIV/00216224:14330/23:00133881 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ams.org/journals/tran/2023-376-07/S0002-9947-2023-08873-0/" target="_blank" >https://www.ams.org/journals/tran/2023-376-07/S0002-9947-2023-08873-0/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8873" target="_blank" >10.1090/tran/8873</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UNIFORM TURAN DENSITY OF CYCLES
Popis výsledku v původním jazyce
In the early 1980s, Erdos and Sos initiated the study of the classical Turan problem with a uniformity condition: the uniform Turan density of a hypergraph H is the infimum over all d for which any sufficiently large hypergraph with the property that all its linear-size subhypergraphs have density at least d contains H. In particular, they raise the questions of determining the uniform Turan densities of K-4((3)-) and K-4((3)). The former question was solved only recently by Glebov, Kral', and Volec [Israel J. Math. 211 (2016), pp. 349-366] and Reiher, Rodl, and Schacht [J. Eur. Math. Soc. 20 (2018), pp. 1139-1159], while the latter still remains open for almost 40 years. In addition to K-4((3)-), the only 3-uniform hypergraphs whose uniform Turan density is known are those with zero uniform Turan density classified by Reiher, Rodl and Schacht [J. London Math. Soc. 97 (2018), pp. 77-97] and a specific family with uniform Turan density equal to 1/27.
Název v anglickém jazyce
UNIFORM TURAN DENSITY OF CYCLES
Popis výsledku anglicky
In the early 1980s, Erdos and Sos initiated the study of the classical Turan problem with a uniformity condition: the uniform Turan density of a hypergraph H is the infimum over all d for which any sufficiently large hypergraph with the property that all its linear-size subhypergraphs have density at least d contains H. In particular, they raise the questions of determining the uniform Turan densities of K-4((3)-) and K-4((3)). The former question was solved only recently by Glebov, Kral', and Volec [Israel J. Math. 211 (2016), pp. 349-366] and Reiher, Rodl, and Schacht [J. Eur. Math. Soc. 20 (2018), pp. 1139-1159], while the latter still remains open for almost 40 years. In addition to K-4((3)-), the only 3-uniform hypergraphs whose uniform Turan density is known are those with zero uniform Turan density classified by Reiher, Rodl and Schacht [J. London Math. Soc. 97 (2018), pp. 77-97] and a specific family with uniform Turan density equal to 1/27.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Svazek periodika
376
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
4765-4809
Kód UT WoS článku
000967035900001
EID výsledku v databázi Scopus
2-s2.0-85160944208