Ramsey upper density of infinite graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133933" target="_blank" >RIV/00216224:14330/23:00133933 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1017/S0963548323000093" target="_blank" >https://doi.org/10.1017/S0963548323000093</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548323000093" target="_blank" >10.1017/S0963548323000093</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ramsey upper density of infinite graphs
Popis výsledku v původním jazyce
For a fixed infinite graph H, we study the largest density of a monochromatic subgraph isomorphic to H that can be found in every two-colouring of the edges of K N. This is called the Ramsey upper density of H and was introduced by Erdos and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs H up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of H, the number of components of H and the expansion ratio |N(I)|/|I| of the independent sets of H.
Název v anglickém jazyce
Ramsey upper density of infinite graphs
Popis výsledku anglicky
For a fixed infinite graph H, we study the largest density of a monochromatic subgraph isomorphic to H that can be found in every two-colouring of the edges of K N. This is called the Ramsey upper density of H and was introduced by Erdos and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs H up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of H, the number of components of H and the expansion ratio |N(I)|/|I| of the independent sets of H.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMBINATORICS PROBABILITY & COMPUTING
ISSN
0963-5483
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
703-723
Kód UT WoS článku
000978677300001
EID výsledku v databázi Scopus
—