Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ramsey upper density of infinite graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133933" target="_blank" >RIV/00216224:14330/23:00133933 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1017/S0963548323000093" target="_blank" >https://doi.org/10.1017/S0963548323000093</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0963548323000093" target="_blank" >10.1017/S0963548323000093</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ramsey upper density of infinite graphs

  • Popis výsledku v původním jazyce

    For a fixed infinite graph H, we study the largest density of a monochromatic subgraph isomorphic to H that can be found in every two-colouring of the edges of K N. This is called the Ramsey upper density of H and was introduced by Erdos and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs H up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of H, the number of components of H and the expansion ratio |N(I)|/|I| of the independent sets of H.

  • Název v anglickém jazyce

    Ramsey upper density of infinite graphs

  • Popis výsledku anglicky

    For a fixed infinite graph H, we study the largest density of a monochromatic subgraph isomorphic to H that can be found in every two-colouring of the edges of K N. This is called the Ramsey upper density of H and was introduced by Erdos and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs H up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of H, the number of components of H and the expansion ratio |N(I)|/|I| of the independent sets of H.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    COMBINATORICS PROBABILITY &amp; COMPUTING

  • ISSN

    0963-5483

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    703-723

  • Kód UT WoS článku

    000978677300001

  • EID výsledku v databázi Scopus