Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ramsey upper density of infinite graph factors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133945" target="_blank" >RIV/00216224:14330/23:00133945 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1215/00192082-10450499" target="_blank" >http://dx.doi.org/10.1215/00192082-10450499</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1215/00192082-10450499" target="_blank" >10.1215/00192082-10450499</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ramsey upper density of infinite graph factors

  • Popis výsledku v původním jazyce

    The study of upper density problems on Ramsey theory was initiated by Erdos and Galvin in 1993 in the particular case of the infinite path, and by DeBiasio and McKenney in general. In this paper, we are concerned with the following problem: given a fixed finite graph F, what is the largest value of n, such that every 2-edge-coloring of the complete graph on N contains a monochromatic infinite F-factor whose vertex set has upper density at least A? Here we prove a new lower bound for this problem. For some choices of F, including cliques and odd cycles, this new bound is sharp because it matches an older upper bound. For the particular case where F is a triangle, we also give an explicit lower bound of 1- p 1 7 = 0.62203 ... , improving the previous best bound of 3/5.

  • Název v anglickém jazyce

    Ramsey upper density of infinite graph factors

  • Popis výsledku anglicky

    The study of upper density problems on Ramsey theory was initiated by Erdos and Galvin in 1993 in the particular case of the infinite path, and by DeBiasio and McKenney in general. In this paper, we are concerned with the following problem: given a fixed finite graph F, what is the largest value of n, such that every 2-edge-coloring of the complete graph on N contains a monochromatic infinite F-factor whose vertex set has upper density at least A? Here we prove a new lower bound for this problem. For some choices of F, including cliques and odd cycles, this new bound is sharp because it matches an older upper bound. For the particular case where F is a triangle, we also give an explicit lower bound of 1- p 1 7 = 0.62203 ... , improving the previous best bound of 3/5.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Illinois Journal of Mathematics

  • ISSN

    0019-2082

  • e-ISSN

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    171-184

  • Kód UT WoS článku

    000975697100008

  • EID výsledku v databázi Scopus

    2-s2.0-85159664123