Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On convex complexity measures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00342826" target="_blank" >RIV/67985840:_____/10:00342826 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On convex complexity measures

  • Popis výsledku v původním jazyce

    Khrapchenko's classical lower bound n(2) on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f(-1)(0) x f(-1)(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n(2)) and show that several measures considered for proving lower bounds on the formula size are convex. We also prove quadratic upper bounds on a classof measures that are not necessarily convex.

  • Název v anglickém jazyce

    On convex complexity measures

  • Popis výsledku anglicky

    Khrapchenko's classical lower bound n(2) on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f(-1)(0) x f(-1)(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n(2)) and show that several measures considered for proving lower bounds on the formula size are convex. We also prove quadratic upper bounds on a classof measures that are not necessarily convex.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA1019401" target="_blank" >IAA1019401: Teorie, důkazy a výpočetní složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    411

  • Číslo periodika v rámci svazku

    16-18

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000276167000016

  • EID výsledku v databázi Scopus