Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The determinant bound for discrepancy is almost tight

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172783" target="_blank" >RIV/00216208:11320/13:10172783 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://arxiv.org/abs/1101.0767" target="_blank" >http://arxiv.org/abs/1101.0767</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/S0002-9939-2012-11334-6" target="_blank" >10.1090/S0002-9939-2012-11334-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The determinant bound for discrepancy is almost tight

  • Popis výsledku v původním jazyce

    In 1986 Lovasz, Spencer, and Vesztergombi proved a lower bound for the hereditary a discrepancy of a set system F in terms of determinants of square submatrices of the incidence matrix of F. As shown by an example of Hoffman, this bound can differ from herdisc(F) by a multiplicative factor of order almost log n, where n is the size of the ground set of F. We prove that it never differs by more than O((log n)^3/2), assuming |F| bounded by a polynomial in n. We also prove that if such an F is the union oft systems F_1, . . ., F_t, each of hereditary discrepancy at most D, then herdisc(F) leq O(t^(1/2)(log n)^(3/2) D). For t = 2, this almost answers a question of Sos. The proof is based on a recent algorithmic result of Bansal, which computes low-discrepancy colorings using semidefinite programming.

  • Název v anglickém jazyce

    The determinant bound for discrepancy is almost tight

  • Popis výsledku anglicky

    In 1986 Lovasz, Spencer, and Vesztergombi proved a lower bound for the hereditary a discrepancy of a set system F in terms of determinants of square submatrices of the incidence matrix of F. As shown by an example of Hoffman, this bound can differ from herdisc(F) by a multiplicative factor of order almost log n, where n is the size of the ground set of F. We prove that it never differs by more than O((log n)^3/2), assuming |F| bounded by a polynomial in n. We also prove that if such an F is the union oft systems F_1, . . ., F_t, each of hereditary discrepancy at most D, then herdisc(F) leq O(t^(1/2)(log n)^(3/2) D). For t = 2, this almost answers a question of Sos. The proof is based on a recent algorithmic result of Bansal, which computes low-discrepancy colorings using semidefinite programming.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Svazek periodika

    141

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    451-460

  • Kód UT WoS článku

    000326515600009

  • EID výsledku v databázi Scopus