Better upper bounds on the Füredi-Hajnal limits of permutations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360666" target="_blank" >RIV/00216208:11320/17:10360666 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/1.9781611974782.150" target="_blank" >http://dx.doi.org/10.1137/1.9781611974782.150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611974782.150" target="_blank" >10.1137/1.9781611974782.150</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Better upper bounds on the Füredi-Hajnal limits of permutations
Popis výsledku v původním jazyce
A binary matrix is a matrix with entries from the set {0,1}. We say that a binary matrix A contains a binary matrix S if S can be obtained from A by removal of some rows, some columns, and changing some 1-entries to 0-entries. If A does not contain S, we say that A avoids S. A k-permutation matrix P is a binary k x k matrix with exactly one 1-entry in every row and one 1-entry in every column. The Füredi-Hajnal conjecture, proved by Marcus and Tardos, states that for every permutation matrix P, there is a constant c_P such that for every positive integer n, every n times n binary matrix A with at least c_Pn 1-entries contains P. We show that c_P<=2^O(k^{2/3} log^{7/3} k/(log log k)^{1/3}) asymptotically almost surely for a random k-permutation matrix P. We also show that c_P<=2^{(4+o(1))k} for every k-permutation matrix P, improving the constant in the exponent of a recent upper bound on c_P by Fox. We also consider a higher-dimensional generalization of the Stanley-Wilf conjecture about the number of d-dimensional n-permutation matrices avoiding a fixed d-dimensional k-permutation matrix, and prove almost matching upper and lower bounds of the form (2^k)^O(n) (n!)^{d-1-1/(d-1)} and n^{-O(k)} k^Omega(n) (n!)^{d-1-1/(d-1)}, respectively.
Název v anglickém jazyce
Better upper bounds on the Füredi-Hajnal limits of permutations
Popis výsledku anglicky
A binary matrix is a matrix with entries from the set {0,1}. We say that a binary matrix A contains a binary matrix S if S can be obtained from A by removal of some rows, some columns, and changing some 1-entries to 0-entries. If A does not contain S, we say that A avoids S. A k-permutation matrix P is a binary k x k matrix with exactly one 1-entry in every row and one 1-entry in every column. The Füredi-Hajnal conjecture, proved by Marcus and Tardos, states that for every permutation matrix P, there is a constant c_P such that for every positive integer n, every n times n binary matrix A with at least c_Pn 1-entries contains P. We show that c_P<=2^O(k^{2/3} log^{7/3} k/(log log k)^{1/3}) asymptotically almost surely for a random k-permutation matrix P. We also show that c_P<=2^{(4+o(1))k} for every k-permutation matrix P, improving the constant in the exponent of a recent upper bound on c_P by Fox. We also consider a higher-dimensional generalization of the Stanley-Wilf conjecture about the number of d-dimensional n-permutation matrices avoiding a fixed d-dimensional k-permutation matrix, and prove almost matching upper and lower bounds of the form (2^k)^O(n) (n!)^{d-1-1/(d-1)} and n^{-O(k)} k^Omega(n) (n!)^{d-1-1/(d-1)}, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
ISBN
978-1-61197-478-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
2280-2293
Název nakladatele
ACM-SIAM
Místo vydání
Neuveden
Místo konání akce
Barcelona
Datum konání akce
16. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—