Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124696" target="_blank" >RIV/00216208:11320/12:10124696 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jcta.2012.04.004" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2012.04.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcta.2012.04.004" target="_blank" >10.1016/j.jcta.2012.04.004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

  • Popis výsledku v původním jazyce

    The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let r(k)(n) be the maximum size of a set of n-permutations with VC-dimension k. Raz showed that r(2)(n) grows exponentially in n. We show that r(3)(n) = 2(Theta(n log alpha (n))) and for every t }= 1, we have r(2t+2) (n) = 2(Theta (n alpha(n)t)) and r(2t+3) (n) = 2 (O(n alpha(n)t log alpha(n))). We also study the maximum number p(k)(n) of 1-entries in an n x n (0.1)-matrix with no (k + 1)-tuple of columns containing all (k + 1)-permutation matrices. We determine that, for example, p(3)(n) = Theta(n alpha(n)) and p(2t+2)(n) = n2((1/t)alpha(n)t +/- O(alpha(n)t-1)) for every t }= 1. We also show that for every positive s there is a slowly growing function zeta(s)(n) (for example zeta(2t+3)(n) = 2(O(alpha t(n))) for every t }= 1) satisfying the following. For all positive integers n and B

  • Název v anglickém jazyce

    Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

  • Popis výsledku anglicky

    The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let r(k)(n) be the maximum size of a set of n-permutations with VC-dimension k. Raz showed that r(2)(n) grows exponentially in n. We show that r(3)(n) = 2(Theta(n log alpha (n))) and for every t }= 1, we have r(2t+2) (n) = 2(Theta (n alpha(n)t)) and r(2t+3) (n) = 2 (O(n alpha(n)t log alpha(n))). We also study the maximum number p(k)(n) of 1-entries in an n x n (0.1)-matrix with no (k + 1)-tuple of columns containing all (k + 1)-permutation matrices. We determine that, for example, p(3)(n) = Theta(n alpha(n)) and p(2t+2)(n) = n2((1/t)alpha(n)t +/- O(alpha(n)t-1)) for every t }= 1. We also show that for every positive s there is a slowly growing function zeta(s)(n) (for example zeta(2t+3)(n) = 2(O(alpha t(n))) for every t }= 1) satisfying the following. For all positive integers n and B

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF COMBINATORIAL THEORY SERIES A

  • ISSN

    0097-3165

  • e-ISSN

  • Svazek periodika

    119

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    1461-1478

  • Kód UT WoS článku

    000305820200007

  • EID výsledku v databázi Scopus