Machine Learning Survival Models for Relapse Prediction in a Early Stage Lung Cancer Patient
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133943" target="_blank" >RIV/00216224:14330/23:00133943 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191078" target="_blank" >http://dx.doi.org/10.1109/IJCNN54540.2023.10191078</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191078" target="_blank" >10.1109/IJCNN54540.2023.10191078</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Survival Models for Relapse Prediction in a Early Stage Lung Cancer Patient
Popis výsledku v původním jazyce
Lung cancer is one of the leading health complications causing high mortality worldwide. The relapsing behavior of medically treated early-stage lung cancer makes this disease even more complicated. Thus predicting such relapse using a data-centric approach provides a complementary perspective for clinicians to understand the disease. In this preliminary work, we explored off-the-shelf survival models to predict the relapse of early-stage lung cancer patients. We analyzed the survival models on a cohort of 1348 early-stage non-small cell lung cancer (NSCLC) patients in different timestamps. Using the prediction explanation model SHAP (SHapley Additive exPlanations), we further explained the best-performing survival model's predictions. Our explainable predictive model is a potential tool for oncologists that address an unmet clinical need for post-treatment patient stratification based on the relapse hazard.
Název v anglickém jazyce
Machine Learning Survival Models for Relapse Prediction in a Early Stage Lung Cancer Patient
Popis výsledku anglicky
Lung cancer is one of the leading health complications causing high mortality worldwide. The relapsing behavior of medically treated early-stage lung cancer makes this disease even more complicated. Thus predicting such relapse using a data-centric approach provides a complementary perspective for clinicians to understand the disease. In this preliminary work, we explored off-the-shelf survival models to predict the relapse of early-stage lung cancer patients. We analyzed the survival models on a cohort of 1348 early-stage non-small cell lung cancer (NSCLC) patients in different timestamps. Using the prediction explanation model SHAP (SHapley Additive exPlanations), we further explained the best-performing survival model's predictions. Our explainable predictive model is a potential tool for oncologists that address an unmet clinical need for post-treatment patient stratification based on the relapse hazard.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN
ISBN
9781665488679
ISSN
2161-4393
e-ISSN
2161-4407
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE
Místo vydání
Broadbeach, Australia
Místo konání akce
Broadbeach, Australia
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
001046198700044