Efficient Strategy Synthesis for MDPs With Resource Constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00134423" target="_blank" >RIV/00216224:14330/23:00134423 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9903331" target="_blank" >https://ieeexplore.ieee.org/document/9903331</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2022.3209612" target="_blank" >10.1109/TAC.2022.3209612</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Strategy Synthesis for MDPs With Resource Constraints
Popis výsledku v původním jazyce
We consider qualitative strategy synthesis for the formalism called consumption Markov decision processes. This formalism can model the dynamics of an agent that operates under resource constraints in a stochastic environment. The presented algorithms work in time polynomial with respect to the representation of the model and they synthesize strategies ensuring that a given set of goal states will be reached (once or infinitely many times) with probability 1 without resource exhaustion. In particular, when the amount of resource becomes too low to safely continue in the mission, the strategy changes course of the agent toward one of a designated set of reload states where the agent replenishes the resource to full capacity; with a sufficient amount of resource, the agent attempts to fulfill the mission again. We also present two heuristics that attempt to reduce the expected time that the agent needs to fulfill the given mission, a parameter important in practical planning. The presented algorithms were implemented, and the numerical examples demonstrate the effectiveness (in terms of computation time) of the planning approach based on consumption Markov decision processes and the positive impact of the two heuristics on planning in a realistic example.
Název v anglickém jazyce
Efficient Strategy Synthesis for MDPs With Resource Constraints
Popis výsledku anglicky
We consider qualitative strategy synthesis for the formalism called consumption Markov decision processes. This formalism can model the dynamics of an agent that operates under resource constraints in a stochastic environment. The presented algorithms work in time polynomial with respect to the representation of the model and they synthesize strategies ensuring that a given set of goal states will be reached (once or infinitely many times) with probability 1 without resource exhaustion. In particular, when the amount of resource becomes too low to safely continue in the mission, the strategy changes course of the agent toward one of a designated set of reload states where the agent replenishes the resource to full capacity; with a sufficient amount of resource, the agent attempts to fulfill the mission again. We also present two heuristics that attempt to reduce the expected time that the agent needs to fulfill the given mission, a parameter important in practical planning. The presented algorithms were implemented, and the numerical examples demonstrate the effectiveness (in terms of computation time) of the planning approach based on consumption Markov decision processes and the positive impact of the two heuristics on planning in a realistic example.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-24711S" target="_blank" >GA21-24711S: Efektivní analýza a optimalizace pravděpodobnostních systémů a her</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
1558-2523
Svazek periodika
68
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
4586-4601
Kód UT WoS článku
001041305400007
EID výsledku v databázi Scopus
2-s2.0-85139456742