Hands-on Cybersecurity Training Behavior Data for Process Mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135294" target="_blank" >RIV/00216224:14330/24:00135294 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.dib.2023.109956" target="_blank" >https://doi.org/10.1016/j.dib.2023.109956</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2023.109956" target="_blank" >10.1016/j.dib.2023.109956</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hands-on Cybersecurity Training Behavior Data for Process Mining
Popis výsledku v původním jazyce
The research on using process mining in learning analytics of cybersecurity exercises relies on datasets that reflect the real behavior of trainees. Although modern cyber ranges, in which training sessions are organized, can collect behavioral data in the form of event logs, the organization of such exercises is laborious. Moreover, the collected raw data has to be processed and transformed into a specific format required by process mining techniques. We present two datasets with slightly different characteristics. While the first exercise with 52 participants was not limited in time, the second supervised exercise with 42 trainees lasted two hours. Also, the cybersecurity tasks were slightly different. A total of 11757 events were collected. Of these, 3597 were training progress events, 5669 were Bash commands, and 2491 were Metasploit commands. Joint CSV files distilled from the raw event data can be used as input for existing process mining tools.
Název v anglickém jazyce
Hands-on Cybersecurity Training Behavior Data for Process Mining
Popis výsledku anglicky
The research on using process mining in learning analytics of cybersecurity exercises relies on datasets that reflect the real behavior of trainees. Although modern cyber ranges, in which training sessions are organized, can collect behavioral data in the form of event logs, the organization of such exercises is laborious. Moreover, the collected raw data has to be processed and transformed into a specific format required by process mining techniques. We present two datasets with slightly different characteristics. While the first exercise with 52 participants was not limited in time, the second supervised exercise with 42 trainees lasted two hours. Also, the cybersecurity tasks were slightly different. A total of 11757 events were collected. Of these, 3597 were training progress events, 5669 were Bash commands, and 2491 were Metasploit commands. Joint CSV files distilled from the raw event data can be used as input for existing process mining tools.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
2352-3409
Svazek periodika
52
Číslo periodika v rámci svazku
February 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001140661000001
EID výsledku v databázi Scopus
2-s2.0-85185848046