Applying Process Discovery to Cybersecurity Training: An Experience Report
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125678" target="_blank" >RIV/00216224:14330/22:00125678 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9799415" target="_blank" >https://ieeexplore.ieee.org/document/9799415</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EuroSPW55150.2022.00047" target="_blank" >10.1109/EuroSPW55150.2022.00047</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying Process Discovery to Cybersecurity Training: An Experience Report
Popis výsledku v původním jazyce
Quality improvement of practical cybersecurity training is challenging due to the process-oriented nature of this learning domain. Event logs provide only a sparse preview of trainees' behavior in a form that is difficult to analyze. Process mining has great potential in converting events into behavioral graphs that could provide better cognitive features for understanding users' behavior than the raw data. However, practical usability for learning analytics is affected by many aspects. This paper aims to provide an experience report summarizing key features and obstacles in integrating process discovery into cyber ranges. We describe our lessons learned from applying process mining techniques to data captured in a cyber range, which we have been developing and operating for almost ten years. We discuss lessons learned from the whole workflow that covers data preprocessing, data mapping, and the utilization of process models for the post-training analysis of Capture the Flag games. Tactics addressing scalability are explicitly discussed because scalability has proven to be a challenging task. Interactive data mapping and Capture the Flag specific features are used to address this issue.
Název v anglickém jazyce
Applying Process Discovery to Cybersecurity Training: An Experience Report
Popis výsledku anglicky
Quality improvement of practical cybersecurity training is challenging due to the process-oriented nature of this learning domain. Event logs provide only a sparse preview of trainees' behavior in a form that is difficult to analyze. Process mining has great potential in converting events into behavioral graphs that could provide better cognitive features for understanding users' behavior than the raw data. However, practical usability for learning analytics is affected by many aspects. This paper aims to provide an experience report summarizing key features and obstacles in integrating process discovery into cyber ranges. We describe our lessons learned from applying process mining techniques to data captured in a cyber range, which we have been developing and operating for almost ten years. We discuss lessons learned from the whole workflow that covers data preprocessing, data mapping, and the utilization of process models for the post-training analysis of Capture the Flag games. Tactics addressing scalability are explicitly discussed because scalability has proven to be a challenging task. Interactive data mapping and Capture the Flag specific features are used to address this issue.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)
ISBN
9781665495608
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
394-402
Název nakladatele
IEEE
Místo vydání
Neuveden
Místo konání akce
Genoa, Italy
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000853211100040