Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135399" target="_blank" >RIV/00216224:14330/24:00135399 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.eacl-long.133.pdf" target="_blank" >https://aclanthology.org/2024.eacl-long.133.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models
Popis výsledku v původním jazyce
While the Large Language Models (LLMs) dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that the reported OOD gains of debiasing methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among QA datasets. We further evidence this by measuring that performance of OOD models depends on bias features comparably to the ID model, motivating future work to refine the reports of LLMs' robustness to a level of known spurious features.
Název v anglickém jazyce
Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models
Popis výsledku anglicky
While the Large Language Models (LLMs) dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that the reported OOD gains of debiasing methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among QA datasets. We further evidence this by measuring that performance of OOD models depends on bias features comparably to the ID model, motivating future work to refine the reports of LLMs' robustness to a level of known spurious features.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
ISBN
9798891760882
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
2179-2193
Název nakladatele
Association for Computational Linguistics
Místo vydání
St. Julian's, Malta
Místo konání akce
St. Julian's, Malta
Datum konání akce
17. 3. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001356732602016