Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135399" target="_blank" >RIV/00216224:14330/24:00135399 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2024.eacl-long.133.pdf" target="_blank" >https://aclanthology.org/2024.eacl-long.133.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models

  • Popis výsledku v původním jazyce

    While the Large Language Models (LLMs) dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that the reported OOD gains of debiasing methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among QA datasets. We further evidence this by measuring that performance of OOD models depends on bias features comparably to the ID model, motivating future work to refine the reports of LLMs' robustness to a level of known spurious features.

  • Název v anglickém jazyce

    Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models

  • Popis výsledku anglicky

    While the Large Language Models (LLMs) dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that the reported OOD gains of debiasing methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among QA datasets. We further evidence this by measuring that performance of OOD models depends on bias features comparably to the ID model, motivating future work to refine the reports of LLMs' robustness to a level of known spurious features.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

  • ISBN

    9798891760882

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    2179-2193

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    St. Julian's, Malta

  • Místo konání akce

    St. Julian's, Malta

  • Datum konání akce

    17. 3. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001356732602016