New Human-Annotated Dataset of Czech Health Records for Training Medical Concept Recognition Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00136991" target="_blank" >RIV/00216224:14330/24:00136991 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-70563-2_9" target="_blank" >http://dx.doi.org/10.1007/978-3-031-70563-2_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70563-2_9" target="_blank" >10.1007/978-3-031-70563-2_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Human-Annotated Dataset of Czech Health Records for Training Medical Concept Recognition Models
Popis výsledku v původním jazyce
Following the widespread successes of leveraging recent large language models (LLMs) in various NLP tasks, this paper focuses on medical text content understanding. Adapting a foundational LLM to the medical domain requires a special kind of datasets where core medical concepts are accurately annotated. This paper addresses the need of better medical concept recognition in free-text electronic health records in low-resourced Slavic languages and introduces CSEHR, a new human-annotated dataset of Czech oncology health records. It describes the dataset inception, management, considerations, processing, and finally presents baseline concept recognition model results. XLM-RoBERTa models trained on the dataset using 5-fold cross-validation achieved an average weighted F1 score of 0.672 in exact and 0.777 in partial medical concept recognition ranging from 0.335 to 0.857 per different concept classes. This paper then describes future plans of bootstrapping larger annotated corpora from the CSEHR dataset and of making the dataset publicly available. This endeavor is unique in the realm of Slavic languages and already at this stage it represents a major step in the field of Slavic medical concept recognition.",
Název v anglickém jazyce
New Human-Annotated Dataset of Czech Health Records for Training Medical Concept Recognition Models
Popis výsledku anglicky
Following the widespread successes of leveraging recent large language models (LLMs) in various NLP tasks, this paper focuses on medical text content understanding. Adapting a foundational LLM to the medical domain requires a special kind of datasets where core medical concepts are accurately annotated. This paper addresses the need of better medical concept recognition in free-text electronic health records in low-resourced Slavic languages and introduces CSEHR, a new human-annotated dataset of Czech oncology health records. It describes the dataset inception, management, considerations, processing, and finally presents baseline concept recognition model results. XLM-RoBERTa models trained on the dataset using 5-fold cross-validation achieved an average weighted F1 score of 0.672 in exact and 0.777 in partial medical concept recognition ranging from 0.335 to 0.857 per different concept classes. This paper then describes future plans of bootstrapping larger annotated corpora from the CSEHR dataset and of making the dataset publicly available. This endeavor is unique in the realm of Slavic languages and already at this stage it represents a major step in the field of Slavic medical concept recognition.",
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023062" target="_blank" >LM2023062: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Text, Speech, and Dialogue
ISBN
9783031705625
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
110-120
Název nakladatele
Springer Nature Switzerland
Místo vydání
Cham
Místo konání akce
Brno
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001307840300009